首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The respiratory chain of a marine bacterium,Vibrio alginolyticus, required Na+ for maximum activity, and the site of Na+-dependent activation was localized on the NADH-quinone reductase segment. The Na+-dependent NADH-quinone reductase extruded Na+ as a direct result of redox reaction. It was composed of three subunits, , , and , with apparentMr of 52, 46, and 32 KDa, respectively. The reduction of ubiquinone-1 to ubiquinol proceeded via ubisemiquinone radicals. The former reaction was catalyzed by the FAD-containing subunit. This reaction showed no specific requirement for Na+. For the formation of ubiquinol, the presence of the subunit and the FMN-containing subunit was essential. The latter reaction specifically required Na+ for activity and was strongly inhibited by 2-n-heptyl-4-hydroxyquinolineN-oxide. It was assigned to the coupling site for Na+ transport. The mode of energy coupling of redox-driven Na+ pump was compared with those of decarboxylase- and ATP-driven Na+ pumps found in other bacteria.  相似文献   

2.
Addition of Na+ to the K+-loadedVibrio alginolyticus cells, creating a 250-fold Na+ gradient, is shown to induce a transient increase in the intracellular ATP concentration, which is abolished by the Na+/H+ antiporter, monensin. The pNa-supported ATP synthesis requires an additional driving force supplied by endogenous respiration or, alternatively, by a K+ gradient (high [K+] inside). In the former case, ATP formation is resistant to the protonophorous uncoupler. Dicyclohexylcarbodiimide and diethylstilbestrol, but not vanadate, completely inhibit Na+ pulse-induced ATP formation. The data agree with the assumption that Na+-ATP-synthase is involved in oxidative phosphorylation inV. alginolyticus. Interrelation of H+ and Na+ cycles in bacteria is discussed.Abbreviations and electrochemical gradients of H+ and Na+, respectively - transmembrane electric potential difference - pH, pNa, and pK concentration gradients of H+, Na+, and K+, respectively - CCCP carbonyl cyanidem-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DES diesthylstilbestrol - HQNO 2-heptyl-4-hydroxyquinolineN-oxide - Tricine N[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

3.
The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps ( generators) are described, i.e., Na+-motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. InVibrio alginolyticus, it was found that , generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). InPropionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, inV. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+-motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerantBacillus FTU, there are H+ - and Na+-motive terminal oxidases. Sometimes, the Na+-translocating enzyme strongly differs from its H+-translocating homolog. So, the Na+-motive and H+-motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+-motive and Na+-motive terminal oxidases differ in that the former is ofaa 3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the sameP. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary generator(s) and consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera:Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcin, etc. Thus, the sodium world seems to occupy a rather extensive area in the biosphere.  相似文献   

4.
Summary Elementary Na+ currents were recorded at 9°C in inside-out patches from cultured neonatal rat heart myocytes. In characterizing the sensitivity of cooled, slowly inactivating cardiac Na+ channels to several antiarrhythmic drugs including propafenone, lidocaine and quinidine, the study aimed to define the role of Na+ inactivation for open channel blockade.In concentrations (1–10 mol/liter) effective to depressNP o significantly, propafenone completely failed to influence the open state of slowly inactivating Na+ channels. With 1 mol/liter, open changed insignificantly to 96±7% of the control. Even a small number of ultralong openings of 6 msec or longer exceeding open of the whole ensemble several-fold and attaining open (at –45 mV) in cooled, (-)-DPI-modified, noninactivating Na+ channels proved to be drug resistant and could not be flicker-blocked by 10 mol/liter propafenone. The same drug concentration induced in(-)-DPI-modified Na+ channels a discrete block with association and dissociation rate constants of 16.1 ± 5.3 × 106 mol–1 sec–1 and 675 ± 25 sec–1, respectively. Quinidine, known to have a considerable affinity for activated Na+ channels, in lower concentrations (5 mol/liter) left open unchanged or reduced, in higher concentrations (10 mol/liter) open only slightly to 81% of the predrug value whereasNP o declined to 30%, but repetitive blocking events during the conducting state could never be observed. Basically the same drug resistance of the open state was seen in cardiac Na+ channels whose open-state kinetics had been modulated by the cytoplasmic presence of F ions. But in this case, propafenone reduced reopening and selectively abolished a long-lasting open state. This drug action is unlikely related to the inhibitory effect onNP o since hyperpolarization and the accompanying block attenuation did not restore the channel kinetics. It is concluded that cardiac Na+ channels cannot be flicker-blocked by antiarrhythmic drugs unless Na+ inactivation is removed.  相似文献   

5.
Summary Apical Na+ entry into frog skin epithelium is widely presumed to be electrodiffusive in nature, as for other tight epithelia. However, in contrast to rabbit descending colon andNecturus urinary bladder, the constant field equation has been reported to fit the apical sodium current (N Na)-membrane potential (mc) relationship over only a narrow range of apical membrane potentials or to be inapplicable altogether. We have re-examined this issue by impaling split frog skins across the basolateral membrane and examining the current-voltage relationships at extremely early endpoints in time after initiating pulses of constant transepithelial voltage. In this study, the rapid transient responses in mc were completed within 0.5 to 3.5 msec. Using endpoints to 1 to 25 msec, the Goldman equation provided excellent fits of the data over large ranges in apical potential of 300 to 420 mV, from approximately –200 to about +145 mV (cell relative to mucosa). Split skins were also studied when superfused with high serosal K+ in order to determine whether theI Na-mc relationship could be generated purely by transepithelial measurements. Under these conditions, the basolateral membrane potential was found to be –10±3 mV (cell relative to serosa, mean±se), the basolateral fractional resistance was greater than zero, and the transepithelial current was markedly and reversibly reduced. For these reasons, use of high serosal K+ is considered inadvisable for determining theI Na-mc relationship, at least in those tissues (such as frog skin) where more direct measurements are technically feasible. Analysis of theI Na-mc relationships under baseline conditions provided estimates of intracellular Na+ concentration and of apical Na+ permeability of 9 to 14mm and of 3 × 10–7 cm · sec–1, respectively, in reasonable agreement with estimates obtained by different techniques.  相似文献   

6.
The cRNA for Torpedo californica Na+/K+-ATPase -subunit (cRNA) was injected into Xenopus oocytes alone or with the cRNA for the Na+/K+-ATPase -subunit (cRNA). When cRNA was injected alone, the amount of the -subunit that accumulated in oocytes increased with increasing amounts of injected cRNA. When cRNA and cRNA were injected simultaneously, less -subunit accumulated than when cRNA was injected alone, whereas the Na+/K+-ATPase activity increased markedly. The decrease in the accumulation of the -subunit was dose-dependent upon the cRNA. The mutant -subunit unable to assemble with the -subunit accumulated in oocytes independently of cRNA, suggesting that post-translational control mechanisms may serve to reduce the accumulation of the -subunit.This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (No. 05259226, No. 06454149).  相似文献   

7.
Preparations of synaptosomes isolated in sucrose or in Na+-rich media were compared with respect to internal pH (pH1), internal Ca2+ concentration ([Ca2+]i), membrane potential and45Ca2+ uptake due to K+ depolarization and Na+/Ca2+ exchange. We found that synaptosomes isolated in sucrose media have a pHi of 6.77±0.04 and a [Ca2+]i of about 260 nM, whereas synaptosomes isolated in Na+-rich ionic media have a pHi of 6.96±0.07 and a [Ca2+]i of 463 nM, but both types of preparations have similar membrane potentials of about –50 mV when placed in choline media. The sucrose preparation takes up Ca2+ only by voltage sensitive calcium channels (VSCC'S) when K+-depolarized, while the Na+-rich synaptosomes take up45Ca2+ both by VSCC'S and by Na+/Ca2+ exchange. The amiloride derivative 2, 4 dimethylbenzamil (DMB), at 30 M, inhibits both mechanisms of Ca2+ influx, but 5-(N-4-chlorobenzyl)-2, 4 dimethylbenzamil (CBZ-DMB), at 30 M, inhibits the Ca2+ uptake by VSCC'S, but not by Na+/Ca2+ exchange. Thus, DMB and CBZ-DMB permit distinguishing between Ca2+ flux through channels and through Na+/Ca2+ exchange. We point out that the different properties of the two types of synaptosomes studied account for some of the discrepancies in results reported in the literature for studies of Ca2+ fluxes and neurotransmitter release by different types of preparations of synaptosomes.Abbreviations used BCECF 2,7-Biscarboxyethyl-5(6)-carboxyfluorescein - BCECF/AM acetoxymethyl ester of BCECF - [Ca2+]i Internal free calcium ion concentration - CBZ-DMB 5-(N-4-chlorobenzyl)-2,4-dimethylbenzamil - DMB 2, 4-dimethylbenzamil - DMSO dimethyl sulfoxide - Indo-1/AM acetoxymethyl ester of Indo-1 - MES 2-|N-Morpholino|ethanesulfonic acid - NMG N-methyl-D-glucamine - pHi internal pH - TPP+ tetraphenylphosphonium - p plasma membrane potential  相似文献   

8.
Changes in demands for Na+ transport alter expression of the Na+,K+-ATPase subunit isoforms. In skeletal muscle, the effects of these changes on expression the 2 isoform, the major isoform expressed in differentiated muscle cell, is not known. Therefore, this study examines regulation of the -subunit isoforms by Na+ in the C2C12 skeletal muscle cell that expresses the 1 and 2 isoforms. Western blot analysis showed that in differentiating C2C12 muscle cell, but not in undifferentiated myoblast, veratridine, a Na+ channel activator, greatly increased expression of the 2 isoform; expression of 1 was unaltered. Because the level of -actinin was unaltered, the data suggest that veratridine treatment did not significantly alter the progression of cell differentiation. Furthermore, a reduction in Na+ transport by tetrodotoxin again failed to alter expression of a1. Thus, in C2C12 skeletal muscle cell, changes in Na+ transport alters expression of the 2, but not the 1 isoform. These results differ from those observed previously in muscle cells that express only the 1 isoform. Because mammalian skeletal muscle expresses both the 1- and 2-subunit isoforms, the differential regulation that was observed may be physiologically relevant in these muscle cells in vivo.  相似文献   

9.
Balnokin YV  Popova LG  Pagis LY  Andreev IM 《Planta》2004,219(2):332-337
Our previous investigations have established that Na+ translocation across the Tetraselmis viridis plasma membrane (PM) mediated by the primary ATP-driven Na+-pump, Na+-ATPase, is accompanied by H+ counter-transport [Y.V. Balnokin et al. (1999) FEBS Lett 462:402–406]. The hypothesis that the Na+-ATPase of T. viridis operates as an Na+/H+ exchanger is tested in the present work. The study of Na+ and H+ transport in PM vesicles isolated from T. viridis demonstrated that the membrane-permeant anion NO3 caused (i) an increase in ATP-driven Na+ uptake by the vesicles, (ii) an increase in (Na++ATP)-dependent vesicle lumen alkalization resulting from H+ efflux out of the vesicles and (iii) dissipation of electrical potential, , generated across the vesicle membrane by the Na+-ATPase. The (Na++ATP)-dependent lumen alkalization was not significantly affected by valinomycin, addition of which in the presence of K+ abolished at the vesicle membrane. The fact that the Na+-ATPase-mediated alkalization of the vesicle lumen is sustained in the absence of the transmembrane is consistent with a primary role of the Na+-ATPase in driving H+ outside the vesicles. The findings allowed us to conclude that the Na+-ATPase of T. viridis directly performs an exchange of Na+ for H+. Since the Na+-ATPase generates electric potential across the vesicle membrane, the transport stoichiometry is mNa+/nH+, where m>n.Abbreviations BTP Bis-Tris-Propane, 1,3-bis[tris(hydroxymethyl)methylamino]-propane - CCCP Carbonyl cyanide m-chlorophenylhydrazone - DTT Dithiothreitol - NCDC 2-Nitro-4-carboxyphenyl N,N-diphenylcarbamate - PMSF Phenylmethylsulfonyl fluoride - PM Plasma membrane  相似文献   

10.
Summary The basic electrical properties of an isolated rat hepatocyte couplet (IRHC) system have been analyzed using classical techniques of epithelial electrophysiology, including measurement of electric potentials, resistances and intracellular ion activities. Applications of these techniques are discussed with respect to their limitations in small isolated cells. Mean intracellular and intracanalicular membrane potentials ranged from –23.7 to –46.7 and –4.3 to –5.9 mV, respectively. Membrane resistances were determined using an equivalent circuit analysis modified according to the geometry of the IRHC system. Resistances of the sinusoidal (basolateral) and canalicular (luminal) cell membranes and tight junctions averaged 0.15 and 0.78 G and 25m, respectively. The cells are electrically coupled via low resistance intercellular communications (58 M). Intracellular ion activities for Na+, K+ and Cl averaged 12.2, 88.1 and 17.7 mmol/liter, respectively. The basolateral membrane potential reveals a permeability sequence ofP K>P Cl>P Na. The luminal potential showed minimal dependence on changes in transjunctional ion gradients, indicating a poor ion selectivity of the paracellular pathway. The electrogenic (Na+–K)-ATPase contributes little to the luminal and cellular negative electric potential. Therefore, the luminal potential probably results from the secretion of impermeant ions and a Donnan distribution of permeant ions, a mechanism which provides the osmotic driving force for bile formation. By providing the unique opportunity to measure luminal potentials, this isolated hepatocyte system permits study of secretory mechanisms for the first time in a mammalian gland using electrophysiologic techniques.  相似文献   

11.
Na+/H+ antiporters are universal devices involved in the Na+ and H+ circulation of both eukaroyotes and prokaryotes, thus playing an essential role in the pH and Na+ homeostasis of cells. This review focuses on the major impact of the application of molecular biology tools in the study of the antiporters. These tools permit the verification of the role of the antiporters and provide insights into their unique biology. A novel signal transduction to Na+ involvingnhaR, a positive regulator, controls the expression ofnhaA inE. coli. A pH sensor regulates the activity of Na+/H+ antiporters, both in eukaryotes and prokaryotes. A most intricate signal transduction to pH involving phosphorylation steps controls the activity ofnhel in higher mammals. The identification of Histidine 226 in the pH sensor of NhaA is a step forward towards the understanding of the pH regulation of these proteins.  相似文献   

12.
Summary Previous studies indicate a particular sensitivity of red blood cell Na+-Li+ countertransport activity to small variations in the fatty acid composition of membrane phospholipids. To assess whether the interindividual variability of Na+-Li+ countertransport is related to differences in the species pattern of erythrocyte phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in vivo, the molecular species composition of PC and PE as well as the kinetics of Na+-Li+ countertransport were analyzed in parallel in normo- and hyperlipidemic donors. Both in diacyl PC and in diacyl-PE the species 160/204 and 160/182 were, respectively, positively and negatively related to the apparent maximal velocity of Na+-Li+ countertransport. The sum of all species with 204 at sn2 of diacyl-PE exhibited a strong positive (r = 0.82, 2p < 0.001), and those containing 182 a negative correlation (r = –0.63, 2p < 0.01) to the transport activity. Essentially similar connections were observed between these species and the apparent affinity of the transport system for intracellular Na+. To evaluate whether the associations between molecular species of membrane phospholipids and Na+-Li+ countertransport activity were indicative of a causal relationship, the species 160/204-PC and 160/182-PC were selectively introduced into the erythrocyte membrane by means of the PC-specific transfer protein. Replacement of 11% of native PC by 160/182-PC inhibited the transport rate by about 25%. Exchange of 6 and 9% of PC with 160/204-PC, in contrast, accelerated the transport rate by 30 and 60%, respectively. The accordance between the in vivo relations and the results of the in vitro modification strongly suggests that elevations and reductions in the arachidonic acid and linoleic acid content of membrane PC and PE contribute to the interindividual variability of red blood cell Na+-Li+ counter-transport activity and its acceleration in hyperlipidemias.The authors wish to thank Dr. W.O. Richter (II. Medizinische Klinik, Klinikum Großhadern, Universität München) for selection of the patients and Dr. T. Brosche (Universität ErlangenNürnberg) for gaschromatographic analyses. This study was supported in part by a grant of the Wilhelm-Sander-Stiftung to B.E.  相似文献   

13.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

14.
Na+/H+ antiporter activity is wide-spread and plays essential physiological roles. We found that several Enterobacteriaceae share conserved sequences with nhaA, the gene coding for an E. coli antiporter. A nhaA strain which is sensitive to Na+ and Li+, was used to clone by complementation a DNA fragment from Salmonella enteritidis which confers resistance to the ions. The cloned fragment increased Na+/H+ antiport activity in membranes isolated from strains carrying the respective hybrid plasmid. DNA sequence analysis of the insert revealed two open reading frames. Both encode putative polypeptides which are closely homologous to the nhaA and nhaR gene products from Escherichia coli. The antiporter activity displays properties very similar to that of the E. coli NhaA, namely, it is activiated by alkaline pH and recognizes Li+ with high affinity.Abbreviations H + Proton electrochemical potential - pH transmembrane pH gradient - Na + Sodium electrochemical potential - SDS Sodium dodecyl sulfate - CIP Calf intestine alkaline phosphates - ORF open reading frame  相似文献   

15.
This review summarizes our experiments on the significance of the -subunit in the functional expression of Na+/K+-ATPase. The -subunit acts like a receptor for the -subunit in the biogenesis of Na+/K+-ATPase and facilitates the correct folding of the -subunit in the membrane. The -subunit synthesized in the absence of the -subunit is subjected to rapid degradation in the endoplasmic reticulum. Several assembly sites are assigned in the sequence of the -subunit from the cytoplasmic NH2-terminal domain to the extracellular COOH-terminus: the NH2-terminal region of the extracellular domain, the conservative proline in the third disulfide loop, the hydrophobic amino acid residues near the COOH-terminus and the cysteine residues forming the second and the third disulfide bridges. Upon assembly, the -subunit confers a resistance to trypsin on the -subunit. The conformations induced in the -subunit of Na+/K+-ATPase by Na+/K+- and H+/K+-ATPase -subunits are somehow different from each other and are named the NK-type and KH-type, respectively. The extracellular domain of the -subunit is involved in the folding of the -subunit leading to trypsin-resistant conformations. The sequences from Cys150 to the COOH-terminus of the Na+/K+-ATPase -subunit and from Ile89 to the COOH–terminus of the H+/K+-ATPase -subunit are necessary to form trypsin-resistant conformations of the NK- and HK-type. respectively. The first disulfide loop of the extracellular domain of the -subunits is critical in the expression of functional Na+/K+-ATPase.  相似文献   

16.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

17.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

18.
The regulation of total creatine content in a myoblast cell line   总被引:5,自引:0,他引:5  
Total cellular creatine content is an important bioenergetic parameter in skeletal muscle. To understand its regulation we investigated creatine transport and accumulation in the G8 cultured skeletal myoblast line. Like other cell types, these contain a creatine transporter, whose activity, measured using a radiolabelling technique, was saturable (Km = 110 ± 25 M) and largely dependent on extracellular [Na+]. To study sustained influences on steady state creatine concentration we measured total cellular creatine content using a fluorimetric method in 48 h incubations. We found that the total cellular creatine content was relatively independent of extracellular creatine concentration, consistent with high affinity sodium-dependent uptake balanced by slow passive efflux. Accordingly, in creatine-free incubations net creatine efflux was slow ( 5 ± 1 % of basal creatine content per day over 6 days), while creatine content in 48 h incubations was reduced by 28 ± 13% of control by the Na+,K+-ATPase inhibitor ouabain. Creatine accumulation after 48 h was stimulated by treatment with the mixed - and -adrenergic agonist noradrenaline, the -adrenergic agonist isoproterenol, the 2-agonist clenbuterol and the cAMP analogue N6,2-O-dibutyryladenosine 3,5-cyclic monophosphate, but was unaffected by the 1 adrenergic agonist methoxamine. The noradrenaline enhancement of creatine accumulation at 48 h was inhibited by the mixed - and -antagonist labetalol and by the -antagonist propranolol, but was unaffected by the 2 antagonist phentolamine; greater inhibition was caused by the 2 antagonist butoxamine than the 1 antagonist atenolol. Creatine accumulation at 48 h was increased to 230 ± 6% of control by insulin and by 140 ± 13% by IGF-I (both at 3 nM). Creatine accumulation at 48 h was also increased to 280 ± 40% of control by 3,3,5-triiodothyronine (at 70 M) and to 220 ± 35% of control by amylin (60 nM). As 3,3,5-triiodothyronine, amylin and isoproterenol all stimulate the Na+,K+-ATPase, we suggest that they stimulate Na+-creatine cotransport indirectly by increasing the transmembrane [Na+] concentration gradient and membrane potential.Abbreviations IGF-I insulin-like growth factor I - IGF-II insulin-like growth factor II - T3 3,3,5-triiodothyronine - CGRP calcitonin gene-related peptide  相似文献   

19.
A ouabain sensitive inward current occurs in Xenopus oocytes in Na+ and K+ -free solutions. Several laboratories have investigated the properties of this current and suggested that acidic extracellular pH (pHo) produces a conducting pathway through the Na+/K+ pump that is permeable to H+ and blocked by [Na+]o. An alternative suggestion is that the current is mediated by an electrogenic H+-ATPase. Here we investigate the effect of pHo and [Na+]o on both transient and steady-state ouabain-sensitive current. At alkaline or neutral pHo the relaxation rate of pre-steady-state current is an exponential function of voltage. Its U-shaped voltage dependence becomes apparent at acidic pHo, as predicted by a model in which protonation of the Na+/K+ pump reduces the energy barrier between the internal solution and the Na+ occluded state. The model also predicts that acidic pHo increases steady-state current leak through the pump. The apparent pK of the titratable group(s) is 6, suggesting that histidine is involved in induction of the conductance pathway. 22Na efflux experiments in squid giant axon and current measurements in oocytes at acidic pHo suggest that both Na+ and H+ are permeant. The acid-induced inward current is reduced by high [Na+]o, consistent with block by Na+. A least squares analysis predicts that H+ is four orders of magnitude more permeant than Na+, and that block occurs when 3 Na+ ions occupy a low affinity binding site (K 0.5=130±30 mM) with a dielectric coefficient of 0.23±0.03. These data support the conclusion that the ouabain-sensitive conducting pathway is a result of passive leak of both Na+ and H+ through the Na+/K+ pump.  相似文献   

20.
Ionic specificity of oxidative phosphorylation was studied in Natroniella acetigenaand Desulfonatronum lacustre, which are new alkaliphilic anaerobes that were isolated from soda lakes and have a pH growth optimum of 9.5–9.7. The ability of their cells to synthesize ATP in response to the imposition of artificial pH+and pNa+gradients was studied. As distinct from other marine and freshwater sulfate reducers and extremely alkaliphilic anaerobes, D. lacustreuses a Na+-translocating ATPase for ATP synthesis. The alkaliphilic acetogen N. acetigena, which develops at a much higher Na+concentration in the medium, generated primary pH+for ATP synthesis. Thus, the high Na+concentrations and alkaline pH values typical of soda lakes do not predetermine the type of bioenergetics of their inhabitants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号