首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An NAD+ dependent succinic semialdehyde dehydrogenase from bovine brain was inactivated by pyridoxal-5'- phosphate. Spectral evidence is presented to indicate that the inactivation proceeds through formation of a Schiff's base with amino groups of the enzyme. After NaBH(4) reduction of the pyridoxal-5'-phosphate inactivated enzyme, it was observed that 3.8 mol phosphopyridoxyl residues were incorporated/enzyme tetramer. The coenzyme, NAD+, protected the enzyme against inactivation by pyridoxal-5'-phosphate. The absorption spectrum of the reduced and dialyzed pyridoxal-5'-phosphate-inactivated enzyme showed a characteristic peak at 325 nm, which was absent in the spectrum of the native enzyme. The fluorescence spectrum of the pyridoxyl enzyme differs completely from that of the native enzyme. After tryptic digestion of the enzyme modified with pyridoxal-5'-phosphate followed by [3H]NaBH4 reduction, a radioactive peptide absorbing at 210 nm was isolated by reverse-phase HPLC. The sequences of the peptide containing the phosphopyridoxyllysine were clearly identical to sequences of other mammalian succinic semialdehyde dehydrogenase brain species including human. It is suggested that the catalytic function of succinic semialdehyde dehydrogenase is modulated by binding of pyridoxal-5'-phosphate to specific Lys(347) residue at or near the coenzyme-binding site of the protein.  相似文献   

2.
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is inactivated by the fluorescent sulfhydryl reagent N-(iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine (1,5-IAEDANS). The inactivation reaction follows pseudo-first-order kinetics with respect to active enzyme to less than 10% remaining enzyme activity, with a second-order inactivation rate constant of 2.6 min-1 mM-1 at pH 7.5 and 30 degrees C. A stoichiometry of 1.05 mol of reagent incorporated per mole of enzyme subunit was found for the completely inactivated enzyme. Almost complete protection of the enzyme activity and of dansyl label incorporation are afforded by MnADP or MnATP, thus suggesting that 1,5-IAEDANS interacts with an enzyme sulfhydryl group at the nucleotide binding site. The fluorescence decay of the AEDANS attached to the protein shows a single-exponential behavior with a lifetime of 18 ns. A comparison of the fluorescence band position and the fluorescence decay with those of the adduct AEDANS-acetylcysteine indicates a reduced polarity for the microenvironment of the substrate binding site. The quenching of the AEDANS moiety in the protein can be described in terms of a collisional and a static component. The rate constant for the collisional component is much lower than that obtained for the adduct in a medium of reduced polarity. These last results indicate that the AEDANS moiety is considerably shielded from the solvent when it is covalently attached to PEPCK.  相似文献   

3.
Pyridoxal compounds can either activate or inactivate horse liver alcohol dehydrogenase in differential labeling experiments. Amino groups outside of the active sites were modified with ethyl acetimidate, while the amino groups in the active sites were protected by the formation of the complex with NAD-plus and pyrazole. After removal of the NAD-plus and pyranzole, the partially acetimidylated enzyme was reductively alkylated with pyridoxal and NaBH4, with the incorporation of one pyridoxal group per subunit of the enzyme. The turnover numbers for the reaction of NAD-plus and ethanol increased by 15-fold, and for NADH and acetaldehyde by 32-fold. The Michaelis and inhibition constants increased 80-fold or more. Pyridoxal phosphate and NaBH4 also modified one group per subunit, but the turnover numbers decreased by 10-fold and the kinetic constants were intermediate between those obtained for pyridoxyl alcohol dehydrogenase and the partially acetimidylated enzyme. With native enzyme, the rates of dissociation of the enzyme-coenzyme complexes are rate-limiting in the catalytic reactions. The pyridoxyl enzyme is activated because the rates of dissociation of the enzyme-coenzyme complexes are increased. The rates of binding of coenzyme to phosphopyridoxyl enzyme have decreased due to the introduction of the negatively charged phosphate. The size of the group is not responsible for this decrease since these rates are not greatly decreased by the incorporation of pyridoxal. For both pyrodoxal and phosphopyridoxyl alcohol dehydrogenases, the interconversion of the ternary complex is at least partially rate-limiting. Chymotryptic-tryptic digestion of pryidoxyl enzyme produced a major peptide corresponding to residues 219 to 229, in which Lys 228 had reacted with pyridoxal. The same lysine residue reacted with pyridoxal phosphate.  相似文献   

4.
Purified v-rasH p21 overproduced in Escherichia coli was treated with guanosine diphospho- and triphosphopyridoxals (GP2- and GP3-PL), affinity labeling reagents specific to a lysyl residue located in the guanine nucleotide binding site. GP2-PL and GP3-PL inhibited [3H]GDP binding to p21 competitively. Incubation of p21 with GP2-PL and GP3-PL followed by reduction with NaBH4 resulted in 40 and 50% loss of [3H]GDP binding activity, respectively, whereas the addition of excess GDP completely protected p21 from the inactivation. The tryptic digest of p21 which was modified with GP2-PL or GP3-PL in the presence or absence of protective GDP and subsequently reduced by NaBH4 was analyzed by reverse phase high performance liquid chromatography. The profile of the effluent monitored by the fluorescence from the pyridoxyl moiety showed the existence of peptides which were specifically labeled only in the absence of GDP. Structural analyses of these peptides allowed us to identify the labeled residue as Lys-16. These results suggest that Lys-16 is located in the guanine nucleotide binding site, close to the beta- or gamma-phosphate group of the nucleotide.  相似文献   

5.
The picosecond time-resolved fluorescence decay data of nine single-tryptophan (trp) proteins and two multi-trp proteins in their native and denatured states were analyzed by the maximum entropy method (MEM). In the denatured state (6 M guanidine hydrochloride) a majority of the single-trp proteins show bimodal (at 25 degrees C) and trimodal (at 85 degrees C) distributions with similar patterns and similar values for average lifetimes. In the native state of the proteins the lifetime distributions were bimodal or trimodal. These results (multimodal distributions) are contradictory to the unimodal Lorentzian distribution of lifetimes reported for some proteins in the native and denatured states. MEM analysis gives a unimodal distribution of lifetimes only when the signal-to-noise ratio is poor in the time-resolved fluorescence decay data. The unimodal distribution model is therefore not realistic for proteins in the native and denatured states. The fluorescence decay components of the bi- or trimodal distribution are associated with the rotamer structures of the indole moiety when the protein is in the random coil state.  相似文献   

6.
Inactivation of a bifunctional enzyme, fructose-6-P,2-kinase:fructose-2,6-bisphosphatase by pyridoxal 5'-P followed by reduction with NaBH4 was studied. Fructose-6-P,2-kinase is over 80% inactivated by 2 mM pyridoxal 5'-P. The stoichiometry of the pyridoxyl-P incorporation and the inactivation of the kinase follows a biphasic curve. The first P-pyridoxyl residue incorporated per protomer does not affect fructose-6-P,2-kinase, but the next two P-pyridoxyl incorporation/protomer results in 80% inactivation. The Km values for ATP and fructose-6-P of the enzymes containing varying amounts of P-pyridoxyl groups at intermediate levels of inactivation are not altered, but Vmax is decreased. Among the metabolites tested, only fructose-2,6-P2 and Mg-ATP are competitive with pyridoxal-P and protect the enzyme against the inactivation. Neither the activity nor the fructose-6-P inhibition of fructose-2,6-bisphosphatase is affected by the modification. The acid hydrolysate of the inactive P-[3H]pyridoxyl enzyme contained only [3H]pyridoxyl lysine. High performance liquid chromatography of tryptic peptides of phospho[3H]pyridoxyl enzymes reveals two peptides which were missing in the enzyme protected by fructose-2,6-P2 or ATP during the modification reaction. These peptides have been isolated, and their amino acid sequences have been determined as Asp-Gln-Asp-Lys-Tyr-Arg and Asp-Val-His-Lys-Tyr. Pyridoxal-P reacts specifically with two lysine residues at the fructose-2,6-P2-binding site of fructose-6-P,2-kinase but not that of fructose-2,6-bisphosphatase. The site may also overlap with the ATP-binding site.  相似文献   

7.
The fluorescent aromatic steroid equilenin, which contains a beta-naphthol moiety, is bound by 3-oxo-delta 5-steroid isomerase. The excitation and emission fluorescence spectra of equilenin when bound to the enzyme, as well as the fluorescence decay time, are indicative of ground-state ionization. In view of the high efficiency of tyrosine quenching, which approaches 100%, the beta-naphthol moiety of equilenin must be in proximity to all three tyrosines of steroid isomerase to account for the observed efficiency of radiationless energy transfer. From the observed response to an external quencher, it appears that enzyme-bound equilenin is largely shielded from solvent. Fluorescence anisotropy measurements indicate a high degree of immobilization of the bound ligand. These models are consistent with proposed models of the enzyme-substrate complex.  相似文献   

8.
Fluorescence as well as fluorescence anisotropy decay parameters have been obtained from NADPH-cytochrome P-450 reductase by time-resolved fluorescence spectroscopy. The two flavins in the enzyme, FMN and FAD, are slightly fluorescent and exhibit heterogeneous fluorescence lifetimes, as observed with other flavoproteins. The time-dependent anisotropy is also multiexponential and is wavelength-dependent. The anisotropy decay is biexponential with two correlation times when the enzyme is excited at the red edge of the first absorption band (514 nm). When the enzyme is excited in the light absorption maximum (458 nm), an additional shorter correlation time is found, which contains information about the rate of energy transfer between the two flavins present in the enzyme. FMN-depleted NADPH-cytochrome P-450 reductase shows also only two correlation times, as does the enzyme in the "air-stable" semiquinone state when excited at 458 nm. Wavelength-dependent steady-state anisotropy measurements of native and FMN-depleted protein show that the former exhibits lower values than the latter in the region of the first absorption band, but when the red edge of the absorption band is reached, the anisotropy becomes equal in both preparations. A similar situation is encountered in model compounds, monomeric and dimeric flavins, immobilized in poly(methyl methacrylate). Both in the models and in the flavoprotein this can be attributed to failure of energy transfer at the red edge of the absorption band. From the results we were able to derive both geometric parameters and dynamic properties of both flavins in the NADPH-cytochrome P-450 reductase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
6,7-Dimethyllumazine derivatives, substituted at the 8-position with aldityls or monohydroxyalkyl groups, have been examined for their binding ability to lumazine apo-protein from two strains of Photobacterium phosphoreum using fluorescence dynamics techniques. On the protein the lumazine has a nearly monoexponential decay of fluorescence with lifetime 13.8 ns (20 degrees C). In free solution the lifetime is 9.6 ns. The concentration of free and bound lumazine in an equilibrium mixture can be recovered readily by analysis of the fluorescence decay. Only the aldityl derivatives D-xylityl and 3'-deoxy-D-ribityl, having stereoconfigurations at the 2' and 4' positions identical to the natural ligand, 8-(1'-D-ribityl), show comparable dissociation constants (0.3 microM, 20 degrees C, pH 7.0). D-Erythrityl and L-arabityl have dissociation constants of 1-2 microM. All other ligands show no interaction at all or have dissociation constants in the range 6-80 microM, which can still be determined semi-quantitatively using the fluorescence decay technique. In the case of these very weakly bound ligands, unambiguous detection of bound ligand can be shown by a long correlation time (23 ns, 2 degrees C) for the fluorescence anisotropy decay. Examination of the bound D-xylityl compound's fluorescence anisotropy decay at high time resolution (< 100 ps) shows rigid association, i.e. no mobility independent of the macromolecule. All bound ligands appear to be similarly positioned in the binding site. The influence of the stereoconfiguration at the 8-position found for lumazine protein parallels that previously observed for the enzyme riboflavin synthase, where the lumazines are substrates or inhibitors. This is consistent with the finding of significant sequence similarity between these proteins. The binding rigidity may have implications for the mechanism of the enzyme.  相似文献   

10.
Measurement of multiple fluorescence decay times of 1,6-diphenyl-1,3,5-hexatriene (DPH) in membranes can in principle be used to investigate structural domains of lipid bilayers. To assess the feasibility of this approach using phase and modulation techniques, we reduced experimental errors specifically associated with performing these measurements on membrane suspensions (probe self-quenching, background fluorescence, turbidity-induced artifacts) and determined empirically the level of precision thereby obtainable. Next we used these precision limits in theoretical calculations to conclude that the ratio of two coexisting decay times must exceed 1.3 if they are to be resolved with reliable accuracy. To demonstrate that such resolutions could be accomplished experimentally in membrane suspensions, three approaches were taken. First, the fluorescence decay of aqueous quinine sulfate quenched by chloride ion was resolved from that of membrane-associated DPH as long as the lifetime ratios of these two fluorophores exceeded the predicted value. Second, populations of DPH-containing lipid vesicles with single (or nearly single) decay times were mixed together, and when there were only two major lifetime components that differed by more than 30%, the resulting heterogeneous fluorescence could be resolved into the two expected lifetime components. Finally, DPH fluorescence decay measurements were correlated with phase behavior in well-characterized lipid systems, revealing a short lifetime component of DPH fluorescence associated with gel-phase lipid vesicles. From these studies, we conclude that only in special cases can co-existing gel and fluid phases be resolved by means of DPH lifetime heterogeneity, within the limits of precision defined herein.  相似文献   

11.
Dynamic fluorescence properties of bacterial luciferase intermediates   总被引:1,自引:0,他引:1  
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1988,27(13):4862-4870
Three fluorescent species produced by the reaction of bacterial luciferase from Vibrio harveyi with its substrates have the same dynamic fluorescence properties, namely, a dominant fluorescence decay of lifetime of 10 ns and a rotational correlation time of 100 ns at 2 degrees C. These three species are the metastable intermediate formed with the two substrates FMNH2 and O2, both in its low-fluorescence form and in its high-fluorescence form following light irradiation, and the fluorescent transient formed on including the final substrate tetradecanal. For native luciferase, the rotational correlation time is 62 or 74 ns (2 degrees C) derived from the decay of the anisotropy of the intrinsic fluorescence at 340 nm or the fluorescence of bound 8-anilino-1-naphthalenesulfonic acid (470 nm), respectively. The steady-state anisotropy of the fluorescent intermediates is 0.34, and the fundamental anisotropy from a Perrin plot is 0.385. The high-fluorescence intermediate has a fluorescence maximum at 500 nm, and its emission spectrum is distinct from the bioluminescence spectrum. The fluorescence quantum yield is 0.3 but decreases on dilution with a quadratic dependence on protein concentration. This, and the large value of the rotational correlation time, would be explained by protein complex formation in the fluorescent intermediate states, but no increase in protein molecular weight is observed by gel filtration or ultracentrifugation. The results instead favor a proposal that, in these intermediate states, the luciferase undergoes a conformational change in which its axial ratio increases by 50%.  相似文献   

12.
The Archaebacterium Thermoplasma acidophilum has a histone-like protein (HTa) abundantly associated with its deoxyribonucleic acid. Each native tetrameric complex of HTa contains 20 phenylalanine residues, 4 tyrosine residues, and no tryptophan. When the protein was excited by radiation at 252 nm, which is a wavelength absorbed predominantly by phenylalanine, the fluorescent emission was mostly from tyrosine. According to the excitation spectrum for this tyrosine fluorescence, the cause was energy transfer from phenylalanine, which occurred with about 50% efficiency. When the tyrosine residues were removed enzymatically, the excited-state lifetime of the phenylalanine residues nearly doubled. Because of energy transfer, the tyrosine emission had two apparent fluorescence decay lifetimes; one lifetime (3.9 ns) was that of tyrosine while the second (12.1 ns) corresponded to the excited state of phenylalanine.  相似文献   

13.
The analogs P-pyridoxyl-L-alanine and P-pyridoxyl-L-homoserine bind to the apoprotein of the enzyme cystathionase and inhibit the reactivation of enzymatic activity after addition of pyridoxyl-5-P. The binding of the inhibitors was monitored by measuring the fluorescence emitted by the P-pyridoxyl moiety at 395 nm (excitation 325 nm). The fluorometric titration results indicate the presence of nonequivalent binding sites in the apoprotein. A model based on two classes of independent binding sites fits the fluorometric data reasonably well. The presence of nonequivalent fluorescent sites in reduced cystathionase was also detected by nanosecond spectroscopy. In contrast to the model compound P-pyridoxyl-epsilon-lysine (tau equals 2.6 ns), the P-pyridoxyl residues of cystathionase display multiexponential fluorescence decay. Two fluorescence lifetimes (tau2 equals 4.1 ns and tau2 equals 15 ns) fit the deconvoluted decay results obtained by pulse fluorimetry. It is proposed that the P-pyridoxyl chromophores of reduced cystathionase have different environments.  相似文献   

14.
用电子顺磁共振EPR技术研究铜锌超氧化物歧化酶(Cu·Zn-SOD)与底物(O_2~(·-)反应达到平衡态时铜离子的EPR波谱表明,在平衡态时的铜离子处于还原态。用还原剂H_2O_2、NaBH_4处理Cu·Zn-SOD后,酶活力变化不同,电泳行为也不同。用NaBH_4处理SOD其活性及电泳行为接近天然酶,但经H_2O_2还原后的酶活性损失严重,电泳后出现多条色带。  相似文献   

15.
Pyridoxal-P reacts specifically with a single lysine residue at the active site of Escherichia coli aspartate transcarbamylase (Greenwell, P., Jewett, S. L., and Stark, G. R. (1973) J. Biol. Chem. 248, 5994-6001). Reduction of the Schiff base with sodium borohydride, succinylation of the remaining lysine residues, and digestion with trypsin result in formation of a single pyridoxyl peptide, which was purified to homogeneity after chromatography on DEAE-cellulose, treatment with alkaline phosphatase, and rechromatography. Amino acid composition and the results of limited sequential degradation showed that this peptide corresponds to residues 62 to 98 in the sequence of Konigsberg and co-workers, and contains 2 residues of lysine (Henderson, L., Roy, D., Martin, D., and Konigsberg, W., personal communication). By similar isolation, a second peptide was obtained from unsuccinylated catalytic subunit, containing only the pyridoxylated lysine, which corresponds to Lys-80. Derivatives of catalytic subunit containing an average of either one, two, or three pyridoxamine-P moieties per trimer have been prepared by reduction. These species, which retain catalytic activity in proportion to their unmodified active sites, were recombined with regulatory subunit to prepare partially modified derivatives of native aspartate transcarbamylase. At pH 8, fluorescence emission bands were observed at 340 nm, due to aromatic amino acids in the protein, and at 395 nm, due to the pyridoxamine-P moiety. Upon excitation at 280 nm energy transfer from protein to pyridoxamine-P was approximately 15%. The properties of the probe were used to study changes accompanying the binding of substrates and inhibitors. The effects of CTP and ATP were small. With the transition state analog N-(phosphonacetyl)-L-aspartate (PALA) or the substrate carbamyl-P, two types of response were observed. Derivatives of catalytic subunit and native enzyme which contain some unmodified sites and hence retain partial catalytic activity gave large increases in fluorescence at 395 nm. However, fully modified inactive derivatives gave much smaller increases. A derivative of native enzyme containing one triply modified and one unmodified catalytic subunit behaved like the other partially modified species. These results indicate that there is communication among the active sites of different catalytic trimers in modified native enzyme, as well as among active sites within the same modified catalytic trimer. The increases in fluorescence result from a red shift of the absorption maximum of the pyridoxamine-P moiety from 315 to 325 nm, which increases the absorbance at the excitation wavelength for fluorescence. At pH 7, the absorption spectrum is already shifted and, consequently, the binding of PALA and carbamyl-P has little effect on the fluorescence. Therefore, the binding of these compounds at pH 8.0 must cause a structural change in the protein, which in turn causes protonation of a group in the modified active sites, altering the spectral properties.  相似文献   

16.
[3H]Pyridoxal-P can be covalently incorporated into Escherichia coli B mutant strain AC70R1 ADP-glucose synthase by reduction with NaBH4. Two distinct lysine residues can be modified by the allosteric activator pyridoxal-P. Incorporation of [3H]pyridoxal-P in the presence of substrate ADP-glucose + MgCl2 prevents pyridoxylation of an ADP-glucose-protected site and allows modification of the allosteric activator site. Incorporation of [3H]pyridoxal-P in the presence of the allosteric effector, 1,6-hexanediol-P2, protects against pyridoxylation of the allosteric activator site and allows modification of the ADP-glucose-protected site. The activator site CNBr [3H]pyridoxyl-P peptide was purified to homogeneity in the presence of urea by Sephadex G-50 and CM-cellulose chromatography. The peptide consists of 59 residues, with a molecular weight of 6750. The NH2-terminal of the peptide has a 16-residue sequence overlap with the previously determined NH2-terminal sequence of the native enzyme. The activator site pyridoxyl-P lysine is identified as residue 38 of the native enzyme's NH2 terminus. The ADP-glucose-protected site CNBr [3H]pyridoxyl peptide was purified to homogeneity by Sephadex G-50 and DEAE-cellulose chromatography. The peptide consists of 21 residues, with a molecular weight of 2460. The sequence of this peptide has been elucidated.  相似文献   

17.
The conformational transitions starting with the native protein, passing the molten globule state and finally approaching the unfolded state of proteins was investigated for bovine carbonic anhydrase B (BCAB) and human -lactalbumin (-HLA) by means of fluorescence decay time measurements of the dye 8-anilinonaphthalene-1-sulphonic acid (8-ANS). Stepwise denaturation was realized by using the denaturant guanidinium chloride (GdmCl). It was shown that 8-ANS bound with protein yields a double-exponential fluorescence decay, where both decay times considerably exceed the decay time of free 8-ANS in water. This finding reflects the hydrophobic environment of the dye molecules attached to the proteins.

The fluorescence lifetime of the short-time component is affected by protein association and can be effectively quenched by acrylamide, indicating that 8-ANS molecules preferentially bind at the protein surface. The fluorescence lifetime of the long-time component is independent of the protein and acrylamide concentration and may be related to protein-embedded dye molecules.

Changes of the long lifetime component upon GdmCl-induced denaturation and unfolding of BCAB and -HLA correlate well with overall changes of the protein conformation. The transition from native protein to the molten globule state is accompanied by an increase of the number of protein-embedded 8-ANS molecules, while the number of dye molecules located at the protein surface decreases. For the transition from the molten globule to the unfolded state was the opposite behaviour observed.  相似文献   


18.
Das TK  Mazumdar S 《Biopolymers》2000,57(5):316-322
Picosecond time-resolved fluorescence studies are carried out on cyanide-inhibited and heat-modified cytochrome c oxidase in aqueous lauryl maltoside surfactant solution, as well as in an aqueous vesicle, to understand the conformational changes associated with electron transfer and proton pumping activity of the enzyme. The tryptophan fluorescence decay profiles follow a four exponential model, which also matches the lifetime maxima obtained in a maximum entropy method analysis. The fast lifetime components are highly affected by the reduction and chemical modification of the enzyme. Changes in these lifetime components are related to the conformational changes in the vicinity of the heme centers of the enzyme. The cyanide-inhibited enzyme in the oxidized form shows a fluorescence decay profile similar to that of the native oxidized form, indicating that the conformational changes due to cyanide binding are very small. However, reduction of the cyanide-inhibited enzyme that leaves cyanide bound heme alpha3 oxidized causes a large increase in the fluorescence lifetimes, which indicates very significant conformational changes due to electron transfer to the dinuclear Cu(A) and heme alpha centers. A comparison of the tryptophan fluorescence decay of various other modified forms of the enzyme leads us to propose that the possible site of conformational coupling is located near heme alpha instead of the binuclear heme alpha3-Cu(B) center.  相似文献   

19.
We have labeled the adenosine triphosphate binding site of Escherichia coli DNA gyrase with the ATP affinity analog, [3H]pyridoxal 5'-diphospho-5'-adenosine (PLP-AMP). PLP-AMP strongly inhibits the ATP-ase and DNA supercoiling activities of DNA gyrase, with 50% inhibition occurring at 7.5 microM inhibitor. ATP and ADP compete with PLP-AMP for binding and protect the enzyme against inhibition. The labeling appears to proceed by a Schiff base complex between the 4-formyl group of the pyridoxyl moiety of PLP-AMP and a protein primary amino group, since the inhibition and reagent labeling are reversible unless the complex is treated with NaBH4. Complete inactivation is estimated to occur upon the covalent incorporation of 2 mol of inhibitor/mol of gyrase. The Km for ATP was found to be unchanged for partially inhibited enzyme samples, suggesting an all-or-none type of inhibition. A 3H-labeled peptide spanning residues 93-131 of the B protein was isolated from a V-8 protease digest. Radioactive peaks corresponding to Lys-103 and Lys-110 were found during the Edman degradation, suggesting that these amino acids form part of the ATP binding site. A comparison of the amino acid sequence in this region with the sequences of other type II topoisomerases indicates the possible location of a common ATP binding domain.  相似文献   

20.
The fluorescence decay kinetics at different ranges of the emission spectrum is reported for 17 proteins. Out of eight proteins containing a single tryptophan residue per molecule, seven proteins display multiexponential decay kinetics, suggesting that variability in protein structure may exist for most proteins. Tryptophan residues whose fluorescence spectrum is red shifted may have lifetimes longer than 7 ns. Such long lifetimes have not been detected in any of the denatured proteins studied, indicating that in native proteins the tryptophans having a red-shifted spectrum are affected by the tertiary structure of the protein. The fluorescence decay kinetics of ten denatured proteins studied obey multiexponential decay functions. It is therefore concluded that the tryptophan residues in denatured proteins can be grouped in two classes. The first characterized by a relatively long lifetime of about 4 ns and the second has a short lifetime of about 1.5 ns. The emission spectrum of the group which is characterized by the longer lifetime is red shifted relative to the emission spectrum of the group characterized by the shorter lifetime. A comparison of the decay data with the quantum yield of the proteins raises the possibility that a subgroup of the tryptophan residues is fully quenched. It is noteworthy that despite this heterogeneity in the environment of tryptophan residues in each denatured protein, almost the same decay kinetics has been obtained for all the denatured proteins studied in spite of the vastly different primary structures. It is therefore concluded that each tryptophan residue interacts in a more-or-less random manner with other groups on the polypeptide chain, and that on the average the different tryptophan residues in denatured proteins have a similar type of environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号