首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Inherited susceptibility to rheumatoid arthritis (RA) is associated with the DRB1 genes encoding the human leukocyte antigen (HLA)-DR4 and HLA-DR1 molecules. Transgenic mice expressing these major histocompatibility complex (MHC) class II molecules have been developed to generate humanized models for RA. The relevance of these models for understanding RA will be discussed.  相似文献   

2.
Inherited susceptibility to rheumatoid arthritis (RA) is associated with the DRB1 genes encoding the human leukocyte antigen (HLA)-DR4 and HLA-DR1 molecules. Transgenic mice expressing these major histocompatibility complex (MHC) class II molecules have been developed to generate humanized models for RA. The relevance of these models for understanding RA will be discussed.  相似文献   

3.
Susceptibility to multiple sclerosis (MS) is associated with certain MHC class II haplotypes, in particular HLA-DR2. Two DR beta chains, DRB1*1501 and DRB5*0101, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP 84-102) to MBP-specific T cells from MS patients. We have determined the crystal structure of HLA-DR2a complexed with MBP 86-105 to 1.9 A resolution. A comparison of this structure with that of HLA-DR2b complexed with MBP 85-99, reported previously, reveals that the peptide register is shifted by three residues, such that the MBP peptide is bound in strikingly different conformations by the two MHC molecules. This shift in binding register is attributable to a large P1 pocket in DR2a, which accommodates Phe92, in conjunction with a relatively shallow P4 pocket, which is occupied by Ile95. In DR2b, by contrast, the small P1 pocket accommodates Val89, while the deep P4 pocket is filled by Phe92. In both complexes, however, the C-terminal half of the peptide is positioned higher in the binding groove than in other MHC class II/peptide structures. As a result of the register shift, different side-chains of the MBP peptide are displayed for interaction with T cell receptors in the DR2a and DR2b complexes. These results demonstrate that MHC molecules can impose different alignments and conformations on the same bound peptide as a consequence of topological differences in their peptide-binding sites, thereby creating distinct T cell epitopes.  相似文献   

4.
Myelin oligodendrocyte glycoprotein (MOG) is an Ag present in the myelin sheath of the CNS thought to be targeted by the autoimmune T cell response in multiple sclerosis (MS). In this study, we have for the first time characterized the T cell epitopes of human MOG restricted by HLA-DR4 (DRB1*0401), an MHC class II allele associated with MS in a subpopulation of patients. Using MHC binding algorithms, we have predicted MOG peptide binding to HLA-DR4 (DRB1*0401) and subsequently defined the in vivo T cell reactivity to overlapping MOG peptides by testing HLA-DR4 (DRB1*0401) transgenic mice immunized with recombinant human (rh)MOG. The data indicated that MOG peptide 97-108 (core 99-107, FFRDHSYQE) was the immunodominant HLA-DR4-restricted T cell epitope in vivo. This peptide has a high in vitro binding affinity for HLA-DR4 (DRB1*0401) and upon immunization induced severe experimental autoimmune encephalomyelitis in the HLA-DR4 transgenic mice. Interestingly, the same peptide was presented by human B cells expressing HLA-DR4 (DRB1*0401), suggesting a role for the identified MOG epitopes in the pathogenesis of human MS.  相似文献   

5.
In humans, HLA-DR alleles sharing amino acids at the third hypervariable region with DRB1*0401(shared epitope) are associated with a predisposition to rheumatoid arthritis, whereas DRB1*0402 is not associated with such a predisposition. Both DRB1*0402 and DRB1*0401 occur in linkage with DQ8 (DQB1*0302). We have previously shown that transgenic (Tg) mice expressing HLA-DRB1*0401 develop collagen-induced arthritis. To delineate the role of "shared epitope" and gene complementation between DR and DQ in arthritis, we generated DRB1*0402, DRB1*0401.DQ8, and DRB1*0402.DQ8 Tg mice lacking endogenous class II molecules, AE(o). DRB1*0402 mice are resistant to develop arthritis. In double-Tg mice, the DRB1*0401 gene contributes to the development of collagen-induced arthritis, whereas DRB1*0402 prevents the disease. Humoral response to type II collagen is not defective in resistant mice, although cellular response to type II collagen is lower in *0402 mice compared with *0401 mice. *0402 mice have lower numbers of T cells in thymus compared with *0401 mice, suggesting that the protective effect could be due to deletion of autoreactive T cells. Additionally, DRB1*0402 mice have a higher number of regulatory T cells and show increased activation-induced cell death, which might contribute toward protection. In DRB1*0401.DQ8 mice, activated CD4(+) T cells express class II genes and can present DR4- and DQ8-restricted peptides in vitro, suggesting a role of class II(+) CD4 T cells locally in the joints. The data suggest that polymorphism in DRB1 genes determines predisposition to develop arthritis by shaping the T cell repertoire in thymus and activating autoreactive or regulatory T cells.  相似文献   

6.
Predisposition to rheumatoid arthritis (RA) is thought to be associated with HLA-DR1, -DR4, and -DR10. However, many epidemiological observations are better explained by a model in which the DQ alleles that are linked to these DR alleles, i.e., DQ5, DQ7, and DQ8, predispose to RA, while certain DR alleles have a dominant protective effect. All protective DRB1 alleles, e.g., *0402, *1301, and *1302, encode a unique motif, (70)DERAA(74). The protection may be explained by the presentation of DRB1-derived peptides by DQ to immunoregulatory T cells, because it was demonstrated in various autoimmune disease models that T cell responses to certain self-Ags can be involved in disease suppression. The aim of this study was to analyze whether peptides carrying the DERAA motif are naturally processed by human APC and presented in the context of the RA-predisposing DQ. Using a synthetic peptide carrying the DRB1*0402-derived sequence (65)KDILEDERAAVDTYC(79), we generated DERAA peptide-specific DQ-restricted T cell clones (TCC) from a DQ8 homozygous individual carrying DERAA-negative DR4 alleles. By analyzing the proliferation of these TCC, we demonstrated natural processing and presentation of the DERAA sequence by the APC of all the individuals (n = 12) carrying a DERAA-positive DRB1 allele and either DQ8 or the DQ8-related DQ7. Using a panel of truncated synthetic peptides, we identified the sequence (67)(I)LEDERAAVD(TY)(78) as the minimal determinant for binding to DQ8 and for recognition by the TCC. These findings support a model in which self-MHC-derived peptide can modulate predisposition to autoimmune disease in humans.  相似文献   

7.
Gene-wide association and candidate gene studies indicate that the greatest effect on multiple sclerosis (MS) risk is driven by the HLA-DRB1*15:01 allele within the HLA-DR15 haplotype (HLA-DRB1*15:01-DQA1*01:02-DQB1*0602-DRB5*01:01). Nevertheless, linkage disequilibrium makes it difficult to define, without functional studies, whether the functionally relevant effect derives from DRB1*15:01 only, from its neighboring DQA1*01:02-DQB1*06:02 or DRB5*01:01 genes of HLA-DR15 haplotype, or from their combinations or epistatic interactions. Here, we analyzed the impact of the different HLA-DR15 haplotype alleles on disease susceptibility in a new “humanized” model of MS induced in HLA-transgenic (Tg) mice by human oligodendrocyte-specific protein (OSP)/claudin-11 (hOSP), one of the bona fide potential primary target antigens in MS. We show that the hOSP-associated MS-like disease is dominated by the DRB1*15:01 allele not only as the DRA1*01:01;DRB1*15:01 isotypic heterodimer but also, unexpectedly, as a functional DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. The contribution of HLA-DQA1/DRB1 mixed isotype heterodimer to OSP pathogenesis was revealed in (DRB1*1501xDQB1*0602)F1 double-Tg mice immunized with hOSP(142–161) peptide, where the encephalitogenic potential of prevalent DRB1*1501/hOSP(142–161)-reactive Th1/Th17 cells is hindered due to a single amino acid difference in the OSP(142–161) region between humans and mice; this impedes binding of DRB1*1501 to the mouse OSP(142–161) epitope in the mouse CNS while exposing functional binding of mouse OSP(142–161) to DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. This study, which shows for the first time a functional HLA-DQA1/DRB1 mixed isotype heterodimer and its potential association with disease susceptibility, provides a rationale for a potential effect on MS risk from DQA1*01:02 through functional DQA1*01:02;DRB1*15:01 antigen presentation. Furthermore, it highlights a potential contribution to MS risk also from interisotypic combination between products of neighboring HLA-DR15 haplotype alleles, in this case the DQA1/DRB1 combination.  相似文献   

8.
Several HLA-DR alleles are genetically associated with rheumatoid arthritis. DRB1*0401 predominates in Northern Europe and has a characteristic (70)QKRAA motif. This sequence contacts bound peptides and the TCR. Further interactions have been suggested with additional proteins during Ag loading. We explored the much stronger processing/presentation of full-length recombinant human acetylcholine receptor alpha subunit to a specific T cell clone by APC from DRB1*0401+ than *0408+ donors. Using DR*04 transfectants, we show that this difference results largely from the single Lys71<-->Arg interchange (0401<-->0408), which scarcely affects epitope binding, rather than from any other associated polymorphism. Furthermore, we proved our recombinant polypeptides to contain the Escherichia coli 70-kDa heat shock protein molecule DnaK and its requirement for efficient processing and presentation of the epitope by DRB1*0401+ cells. According to a recent report, 70-kDa heat shock protein chaperones preferentially bind to the QKRAA, rather than the QRRAA, motif. Variations between the shared epitope motifs QKRAA and QRRAA are emphasized by underlining. We propose that such interactions enhance the intracellular epitope loading of *0401 molecules. They may thus broaden immune responses to pathogens and at least partially explain the distinct contributions of DRB1*0401 and other alleles to disease predisposition.  相似文献   

9.
T cell epitopes containing peptides have been recently proposed as an alternative to conventional immunotherapy of allergic diseases because they are expected to be better tolerated than allergen extracts. A principal limitation to their clinical use is that they present an important diversity, which primarily results from the polymorphism of HLA class II molecules. In Caucasian populations, however, seven alleles of the most expressed molecules (namely DRB1*0101, DRB1*0301, DRB1*0401, DRB1*0701, DRB1*1101, DRB1*1301, and DRB1*1501) predominate. Peptides from allergens that would efficiently bind to them should be potential candidates for specific immunotherapy. In this paper, we have determined the peptides present in the major bee venom allergen by investigating the capacity of synthetic peptides that encompass its whole sequence to bind to each allele. Several efficient binders have been identified and are either allele-specific or common to several HLA-DR molecules. Interestingly enough, the 81-97 sequence is universal in the sense that it binds to all studied molecules. This sequence is surrounded by several active regions, which make the 76-106 sequence particularly rich of binding determinants and a good candidate for specific immunotherapy. Statistical analyses of the binding data also provide an overview of the preponderant HLA-DR alleles specificity.  相似文献   

10.
Analysis of anchor residues in a naturally processed HLA-DR53 ligand   总被引:2,自引:0,他引:2  
 The peptide motif of the HLA-DR53 (DRB4*0101) molecule, which is associated with autoimmune diseases including Vogt-Koyanagi-Harada’s syndrome, was determined by peptide binding assay using human L plastin p581 – 595 peptide and its substituted analogues. L plastin p581 – 595 peptide is one of the naturally processed peptides bound to HLA-DR9/DR53 (DRB1*0901/DRB4*0101) molecules. The binding affinity of each peptide to the HLA-DR53 molecule was measured by fluorescence intensity of biotinylated peptides to L cell transfectants expressing HLA-DR53 molecules, followed by treatment with avidin-fluorescence. Binding of biotinylated peptides to HLA-DR53 molecules was not inhibited by all single-alanine-substituted nonbiotinylated peptides, indicating that the replaced position was important for binding to the HLA-DR53 moleule. The inhibitory motif is considered to be an HLA-DR53-specific binding motif, composed of a positively charged residue (K) at position 1, a hydrophobic residue (I) at position 4, positively charged residue (R or K) at position 8 or 9, and another hydrophobic residue (I) at position 10. This predicted motif is different from the binding motifs of other HLA-DR molecules. Received: 29 April 1996 / Revised: 16 June 1996  相似文献   

11.
HLA haplotype analysis has important application value in human population genetics, anthropological research and HLA matching transplantation. Based on HLA-A, -B, -C, -DRB1 and -DQB1 genotyping data from 663 families including 663 leukemia patients and 991 related donors, the allele frequency (AF) and haplotype frequency (HF) of two-, three- and five-locus haplotype distribution patterns in the Chinese Han population were determined by family segregation. A total of 38 alleles at A locus, 75 alleles at B locus, 35 alleles at C locus, 53 alleles at DRB1 locus and 22 alleles at DQB1 locus were discovered in this population. The frequencies of these alleles were basically consistent with those of previous reports except for some tiny differences. The study found 11 A-C, 15 C-B, 4 B-DRB1 and 11 DRB1-DQB1 two-locus haplotypes with a frequency over 2%. The number of A-C-B and A-B-DRB1 three-locus haplotype with a frequency over 1% were 11 and 3 respectively. The most common HLA-A-C-B-DRB1-DQB1 haplotype (HF>1%) were A*3001-C*0602-B*1302-DR*0701-DQ*0202 (4.30%), A*0207-C*0102-B*4601-DR*0901-DQ*0303 (3.07%), A*3303-C*0302-B*5801-DR*0301-DQ*0201 (1.49%) and A*1101-C*0102-B*4601-DR*0901-DQ*0303 (1.01%). The results are helpful for finding matching donors for hematopoietic stem cell transplant patients and also contribute to transplant immunology, HLA-related diseases, research of human genetics and other fields.  相似文献   

12.
The human MHC class II genes are associated with genetic susceptibility to multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the CNS of presumed autoimmune origin. These genes encode for proteins responsible for shaping immune response. The exact role of HLA-DQ and -DR genes in disease pathogenesis is not well-understood due to the high polymorphism, linkage disequilibrium, and heterogeneity of human populations. The advent of HLA class II-transgenic (Tg) mice has helped in answering some of these questions. Previously, using single-Tg mice (expressing the HLA-DR or -DQ gene), we showed that proteolipid protein (PLP)(91-110) peptide induced classical experimental autoimmune encephalomyelitis only in DR3.Abeta degrees mice, suggesting that DR3 (DRB1*0301) is a disease susceptible gene in the context of PLP. Human population studies have suggested that HLA-DQ6 (DQB1*0601) may be a protective gene in MS. To test this disease protection in an experimental model, we generated double-Tg mice expressing both HLA-DR3 and -DQ6. Introduction of DQ6 onto DR3-Tg mice led to a decrease in disease incidence on immunization with PLP(91-110) peptide indicating a dominant protective role of DQ6. This protective effect is due to high levels of IFN-gamma produced by DQ6-restricted T cells, which suppressed proliferation of encephalitogenic DR3-restricted T cells by inducing apoptosis. Our study indicates that DQ6 modifies the PLP(91-110)-specific T cell response in DR3 through anti-inflammatory effects of IFN-gamma, which is protective for experimental autoimmune encephalomyelitis. Thus, our double-Tg mouse provides a novel model in which to study epistatic interactions between HLA class II molecules in MS.  相似文献   

13.
The importance of the HLA-DR locus to multiple sclerosis (MS) susceptibility was assessed in 542 sib pairs with MS and in their families. By genotyping 1,978 individuals for HLA-DRB1 alleles, we confirmed the well-established association of MS with HLA-DRB1*15 (HLA-DRB1*1501 and HLA-DRB5*0101), by the transmission/disequilibrium test (chi2=138.3; P<.0001). We obtained significant evidence of linkage throughout the whole data set (mlod=4.09; 59.9% sharing). Surprisingly, similar sharing was also observed in 58 families in which both parents lacked the DRB1*15 allele (mlod=1.56; 62.7% sharing; P=.0081). Our findings suggest that the notion that HLA-DRB1*15 is the sole major-histocompatibility-complex determinant of susceptibility in northern-European populations with MS may be incorrect. It remains possible that the association of MS with HLA-DRB1*15 is due to linkage disequilibrium with a nearby locus and/or to the presence of disease-influencing allele(s) in DRB1*15-negative haplotypes.  相似文献   

14.
To determine whether canine rheumatoid arthritis (CRA) is associated with dog MHC (DLA-DRB1) alleles which contain the QRRAA/RKRAA conserved third hypervariable region (3HVR) sequence, DNA samples were extracted from 61 dogs with clinically diagnosed small-joint polyarthritis and from 425 controls. Breed-matched controls were available for 41 cases. DLA-DRB1 genotypes were identified using molecular typing methods. Phenotype frequencies were compared between cases and controls and odds ratios with 95% confidence intervals calculated. Several DLA-DRB1 alleles were associated with increased risk for CRA: DLA-DRB1*002, DRB1*009, and DRB1*018. This was also observed for the presence of any shared epitope (SE)-bearing allele. The associations with DLA-DRB1*002 and the SE were maintained when only breed-matched cases and controls were compared. This study suggests that a conserved amino acid motif in the 3HVR present in some DRB1 alleles of both dogs and humans is associated with rheumatoid arthritis in both species.  相似文献   

15.
Models of disease susceptibility in multiple sclerosis (MS) often assume a dominant action for the HLA-DRB1*1501 allele and its associated haplotype (DRB1*1501-DQB1*0602 or DR2). A robust and phenotypically well-characterized MS data set was used to explore this model in more detail. A dose effect of HLA-DR2 haplotypes on MS susceptibility was revealed. This observation suggests that, in addition to the role of HLA-DR2 in MS, two copies of a susceptibility haplotype further increase disease risk. Second, we report that DR2 haplotypes modify disease expression. There is a paucity of benign MS and an increase of severe MS in individuals homozygous for DR2. Concepts of the molecular mechanisms that underlie linkage and association of the human leukocyte antigen (HLA) region to MS need to be revised to accommodate these data.  相似文献   

16.
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen-presenting cells that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. Susceptibility to multiple sclerosis is associated with certain MHC class II haplotypes, including human leukocyte antigen (HLA) DR2. Two DRB chains, DRB5*0101 and DRB1*1501, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP-(84-102)) to MBP-specific T cells from multiple sclerosis patients. We have previously demonstrated that the peptide binding/T cell recognition domains of rat MHC class II (alpha1 and beta1 domains) could be expressed as a single exon for structural and functional characterization; Burrows, G. G., Chang, J. W., B?chinger, H.-P., Bourdette, D. N., Wegmann, K. W., Offner, H., and Vandenbark A. A. (1999) Protein Eng. 12, 771-778; Burrows, G. G., Adlard, K. L., Bebo, B. F., Jr., Chang, J. W., Tenditnyy, K., Vandenbark, A. A., and Offner, H. (2000) J. Immunol. 164, 6366-6371). Single-chain human recombinant T cell receptor ligands (RTLs) of approximately 200 amino acid residues derived from HLA-DR2b were designed using the same principles and have been produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native HLA-DR2 heterodimer. The proteins exhibited a cooperative two-state thermal unfolding transition, and DR2-derived RTLs with a covalently linked MBP peptide (MBP-(85-99)) showed increased stability to thermal unfolding relative to the empty DR2-derived RTLs. These novel molecules represent a new class of small soluble ligands for modulating the behavior of T cells and provide a platform technology for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease.  相似文献   

17.
 A comprehensive analysis was carried out of the tri-molecular complex of peptide, major histocompatibility class II molecule, and T-cell receptor (TcR) involved in the recognition of the promiscuous HA (306–318) peptide, restricted by one of two closely related HLA-DR alleles, HLA-DRB1*0101 and HLA-DRB1*0103. These two DR molecules differ by only three amino acids at positions 67, 70, and 71, in the third variable region of the DRB1 chain. None of the HA (306–318)-specific T-cell clones restricted by these two DR molecules tolerated amino acid substitution at the peptide-binding position 71, despite the fact that the substitution did not interfere with peptide binding. The majority of the DRB1*0103-restricted clones tolerated substitution of the amino acid at the TcR-contacting position 70, while the DRB1*0101-restricted T cells did not. Biased usage of TRVA and TRVB segments was observed for the DRB1*0103-restricted clones; in contrast, apparently random usage was seen in the DRB1*0101-restricted T cells. Finally, limiting dilution analysis revealed a lower frequency of T cells reactive with the HA peptide in a DRB1*0103 compared with a DRB1*0101 individual. Taken together these data suggest that biased TcR gene usage may reflect a relatively low precursor frequency of T cells, and the need for clonal expansion of a limited set of high avidity T cells. Received: 7 August 1998 / Revised: 19 November 1998  相似文献   

18.
Certain HLA-DR alleles confer strong susceptibility to the autoimmune disease rheumatoid arthritis (RA). We compared RA-associated alleles, HLA-DR*0401, HLA-DR*0404, and HLA-DR*0405, with closely related, non-RA-associated alleles, HLA-DR*0402 and HLA-DR*0403, to determine whether they differ in their interactions with the class II chaperone, invariant chain (Ii). Ii binds to class II molecules in the endoplasmic reticulum, inhibits binding of other ligands, and directs class II-Ii complexes to endosomes, where Ii is degraded to class II-associated Ii peptide (CLIP). To evaluate the interaction of Ii and CLIP with these DR4 alleles, we introduced HLA-DR*0401, *0402, and *0404 alleles into a human B cell line that lacked endogenous HLA-DR or HLA-DM molecules. In a similar experiment, we introduced HLA-DR*0403 and *0405 into an HLA-DM-expressing B cell line, 8.1.6, and its DM-negative derivative, 9.5.3. Surface abundance of DR4-CLIP peptide complexes and their susceptibility to SDS-induced denaturation suggested that the different DR4-CLIP complexes had different stabilities. Pulse-chase experiments showed CLIP dissociated more rapidly from RA-associated DR molecules in B cell lines. In vitro assays using soluble rDR4 molecules showed that DR-CLIP complexes of DR*0401 and DR*0404 were less stable than complexes of DR*0402. Using CLIP peptide variants, we mapped the reduced CLIP interaction of RA-associated alleles to the shared epitope region. The reduced interaction of RA-associated HLA-DR4 molecules with CLIP may contribute to the pathophysiology of autoimmunity in RA.  相似文献   

19.

Background

IL-17-dependent cellular immune responses to the α1 chain of collagen type V are associated with development of bronchiolitis obliterans syndrome after lung transplantation, and with idiopathic pulmonary fibrosis and coronary artery disease, primary indications for lung or heart transplantation, respectively.

Methodology/Principal Findings

We found that 30% of the patients awaiting lung transplantation exhibited a strong cell-mediated immune response to col(V). Of these, 53% expressed HLA-DR15, compared to a 28% HLA-DR15 frequency in col(V) low-responders (p=0.02). After transplantation, patients with HLA-DR1 and -DR17, not -DR15, developed anti-col(V) responses most frequently (p=0.04 and 0.01 vs. controls, respectively). However, recipients of a lung from an HLA-DR15+ donor were at significantly elevated risk of developing anti-col(V) responses (p=0.02) and BOS (p=0.03). To determine the molecular basis of this unusual pattern of DR allele bias, a peptide library comprising the collagenous region of the α1(V) protein was screened for binding to HLA-DR0101, -DR1501, -DR0301 (DR17) or to HLA-DQ2 (DQA1*0501: DQB1*0201; in linkage disequilibrium with -DR17) and -DQ6 (DQA1*0102: DQB1*0602; linked to -DR15). Eight 15-mer peptides, six DR-binding and two DQ-binding, were identified. HLA-DR15 binding to two peptides yielded the highest binding scores: 650 (where 100 = positive control) for p799 (GIRGLKGTKGEKGED), and 193 for p1439 (LRGIPGPVGEQGLPG). These peptides, which also bound weakly to HLA-DR1, elicited responses in both HLA-DR1+ and -DR15+ col(V) reactive hosts, whereas binding and immunoreactivity of p1049 (KDGPPGLRGFPGDRG) was DR15-specific. Remarkably, a col(V)-reactive HLA-DR1+DR15neg lung transplant patient, whose donor was HLA-DR15+, responded not only to p799 and p1439, but also to p1049.

Conclusions/Significance

HLA-DR15 and IPF disease were independently associated with pre-transplant col(V) autoimmunity. The increased risk of de novo immunity to col(V) and BOS, associated with receiving a lung transplant from an HLA-DR15+ donor, may result from presentation by donor-derived HLA- DR15, of novel self-peptides to recipient T cells.  相似文献   

20.
Allergen-specific cells are present in very low frequency in peripheral blood of humans, and differ in function in allergic and nonallergic individuals. We report in this study that soluble class II MHC tetramers can be used to directly identify and study such allergen epitope-specific CD4+ T cells in humans. We identified the major antigenic epitope of rye grass allergen Lol p 1 in HLA-DRB1*0401 individuals using HLA-DR*0401 transgenic mice and peripheral blood cells from HLA-DR*0401 individuals. Using DRB1*0401 tetramers loaded with this major epitope of Lol p 1, we detected allergen-specific CD4+ T cells in the peripheral blood of DRB1*0401 rye grass allergic individuals after ex vivo expansion with allergen. These tetramer-positive cells produced IL-4, but little IFN-gamma. In contrast, we were unable to detect rye grass tetramer-positive cells in cultures from HLA-DR*0401 nonallergic individuals, even after expansion with IL-2. Thus, our results suggest that rye grass allergen-specific T cells in DR*0401 nonallergic subjects are present at very low levels (e.g., because of deletion or suppression), differ in a fundamental way in their requirement for ex vivo expansion (e.g., they may be anergic), or use TCRs distinct from those of allergic individuals. Thus, analysis using DRB1*0401 tetramers loaded with a major epitope of Lol p 1 indicates that allergen-specific CD4+ T cells in nonallergic individuals are distinct from those in allergic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号