首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A transport system for coenzyme M (2-mercaptoethanesulfonic acid [HS-CoM]) and methylcoenzyme M [(2-(methylthio)ethanesulfonic acid (CH3-S-CoM)] in Methanococcus voltae required energy, showed saturation kinetics, and concentrated both forms of coenzyme M against a concentration gradient. Transport required hydrogen and carbon dioxide for maximal uptake. CH3-S-CoM uptake was inhibited by N-ethylmaleimide and monensin. Both HS-CoM and CH3-S-CoM uptake showed sodium dependence. In wild-type M. voltae, HS-CoM uptake was concentration dependent, with a Vmax of 960 pmol/min per mg of protein and an apparent Km of 61 microM. Uptake of CH3-S-CoM showed a Vmax of 88 pmol/min per mg of protein and a Km of 53 microM. A mutant of M. voltae resistant to the coenzyme M analog 2-bromoethanesulfonic acid (BES) showed no uptake of CH3-S-CoM but accumulated HS-CoM at the wild-type rate. While the higher-affinity uptake system was specific for HS-CoM, the lower-affinity system mediated uptake of HS-CoM, CH3-S-CoM, and BES. Analysis of the intracellular coenzyme M pools in metabolizing cells showed an intracellular HS-CoM concentration of 14.8 mM and CH3-S-CoM concentration of 0.21 mM.  相似文献   

2.
When 7-mercaptoheptanoylthreonine phosphate (HS-HTP) was used as the sole source of electrons for reductive demethylation of 2-(methylthio)-ethanesulfonic acid (CH3-S-CoM) by cell extracts of Methanobacterium thermoautotrophicum strain delta H, the heterodisulfide of coenzyme M and HS-HTP (CoM-S-S-HTP) was quantitatively produced: HS-HTP + CH3-S-CoM----CH4 + CoM-S-S-HTP. CH4 and CoM-S-S-HTP were produced stoichiometrically in a ratio of 1:1. Coenzyme M (HS-CoM) inhibited HS-HTP driven methanogenesis indicating that CH3-S-CoM rather than HS-CoM was the substrate for CoM-S-S-HTP formation.  相似文献   

3.
Abstract Since bromoethanesulfonate (BES) is an inhibitor of methane production (competitive with methyl-coenzyme M), cells able to accumulate large internal pools of methyl-coenzyme M via uptake of its precursor, HS-CoM, should be protected from BES by addition of HS-CoM to the growth medium. Hydrogen-oxidizing marine methanogen enrichments were prepared from anaerobic sediment samples collected at Sippewisset Salt Marsh and Oyster Bay Inlet near Woods Hole, MA. The three enrichments studied were a mixture of cell types with at least 50% of the culture comprised of methanogens. Methane production was found to be sensitive to BES with half maximal inhibition occurring at 5–20 μM BES depending on the enrichment. For each, half maximal protection against 40 μM BES occurred at a HS-CoM: BES molar ratio of 20: 1 to 40: 1. Since the protected enrichments exhibited normal sensitivity toward BES after removal of HS-CoM, it was concluded that methane production in the presence of both BES and HS-CoM resulted from true protection and not growth of BES-resistant mutants. These results suggest that uptake of HS-CoM may be a general property of methanogens occupying anaerobic marine sediments. It is possible that uptake of this coenzyme is an important nutritional feature of methanogens in their natural habitat.  相似文献   

4.
Detection of a glycosylated subunit in human serum ferritin.   总被引:8,自引:1,他引:7       下载免费PDF全文
Chemical reaction of coenzyme M, sodium 2-mercaptoethanesulphonate (HS-CoM, Na+), and formaldehyde formed sodium 2-(hydroxymethylthio)ethanesulphonate (HOCH2-S-CoM), whereas reaction with the ammonium salt of HS-CoM yielded iminobis-[2-(methylthio)ethanesulphonate], monoammonium salt [NH = (CH2 - S - CoM)2]. In water, NH = (CH2 - S - CoM)2 decomposed to 2-(aminomethylthio)ethanesulphonate (NH2CH2 - S - CoM) and HOCH2-S-CoM. NH-2-CH2 - CoM was degraded further to form more HOCH2-S-CoM. The structures of these coenzyme M derivatives were confirmed by i.r. and n.m.r. spectroscopy and by elemental analysis. When added to cell extracts of Methanobacterium thermoautotrophicum, methane was formed from either HOCH2 - S - CoM or NH = (CH2 - S - CoM)2 at rates comparable with the rate of methane formation from the methanogenic precursor 2-(methylthio)-ethanesulphonate (CH3 - S - CoM). Formaldehyde was reduced to methane at similar rates. In addition, certain hemimercaptals, including thiazolidine and thiazolidine-4-carboxylate, were reduced, although at slower rates. The reduction of formaldehyde, thiazolidine, or thiazolidine-4-carboxylate required catalytic amounts of HS-CoM. ATP was required by cells extracts for reduction of each of these methane precursors.  相似文献   

5.
The transfer of the methyl group of acetate to coenzyme M (2-mercaptoethanesulfonic acid; HS-CoM) during the metabolism of acetate to methane was investigated in cultures of Methanosarcina strain TM-1. The organism metabolized CD3COO- to 83% CD3H and 17% CD2H2 and produced no CDH3 or CH4. The isotopic composition of coenzyme M in cells grown on CD3COO- was analyzed with a novel gas chromatography-mass spectrometry technique. The cells contained CD3-D-CoM and CD2H-S-CoM) in a proportion similar to that of CD3H to CD2H2. These results, in conjunction with a report (J.K. Nelson and J.G. Ferry, J. Bacteriol. 160:526-532, 1984) that extracts of acetate-grown strain TM-1 contain high levels of CH3-S-CoM methylreductase, indicate that CH3-S-CoM is an intermediate in the metabolism of acetate to methane in this organism.  相似文献   

6.
2-Mercaptoethanesulfonic acid (coenzyme M, HS-CoM), methylcoenzyme M (CH3-S-CoM), acetylcoenzyme M (CH3CO-S-CoM), 2,2′-dithiodiethanesulfonic acid [(S-CoM)2], and bromoethanesulfonic acid can be simultaneously and conveniently determined by isotachophoretic analysis. Amounts as low as 10 pmol can be detected. The reproducibility of the method is within 2%. The reduction of (S-CoM)2 and the formation of CH3-S-CoM from HS-CoM and methanol by dialyzed cell-free extracts of Methanosarcina barkeri were studied.  相似文献   

7.
Methyl-coenzyme M reductase (MCR) catalyzes the reduction of methyl-coenzyme M (CH(3)-S-CoM) to methane. The enzyme contains as a prosthetic group the nickel porphinoid F(430) which in the active enzyme is in the EPR-detectable Ni(I) oxidation state. Crystal structures of several inactive Ni(II) forms of the enzyme but not of the active Ni(I) form have been reported. To obtain structural information on the active enzyme-substrate complex we have now acquired X-ray absorption spectra of active MCR in the presence of either CH(3)-S-CoM or the substrate analog coenzyme M (HS-CoM). For both MCR complexes the results are indicative of the presence of a five-coordinate Ni(I), the five ligands assigned as four nitrogen ligands from F(430) and one oxygen ligand. Analysis of the spectra did not require the presence of a sulfur ligand indicating that CH(3)-S-CoM and HS-CoM were not coordinated via their sulfur atom to nickel in detectable amounts. As a control, X-ray absorption spectra were evaluated of three enzymatically inactive MCR forms, MCR-silent, MCR-ox1-silent and MCR-ox1, in which the nickel is known to be six-coordinate. Comparison of the edge position of the X-ray absorption spectra revealed that the Ni(I) in the active enzyme is more reduced than the Ni in the two EPR-silent Ni(II) states. Surprisingly, the edge position of the EPR-active MCR-ox1 state was found to be the same as that of the two silent states indicating similar electron density on the nickel.  相似文献   

8.
Methanofuran (carbon dioxide reduction factor) became labeled when incubated in cell extracts of Methanobacterium under hydrogen and 14CO2 in the absence of methanopterin. Proton NMR spectroscopy revealed that a formyl group was bound to the primary amine of methanofuran. [14C]Formylmethanofuran was enzymically converted to 14CH4 in the presence of CH3-S-CoM [2-(methylthio)ethanesulfonic acid], hydrogen, and methanopterin, establishing the formyl moiety as an intermediate in methanogenesis. In the absence of methanopterin, a substantial portion of the formyl label was oxidized to 14CO2 rather than reduced to 14CH4, consistent with a model in which the C1 intermediate is first bound to methanofuran and then to methanopterin, during its reduction. When CH3-S-CoM was replaced by HS-CoM (2-mercaptoethanesulfonic acid), most of the formyl label was oxidized to 14CO2, indicating that methyl group reduction by the CH3-S-CoM methylreductase is required for the conversion of formylmethanofuran to methane.  相似文献   

9.
2-Bromoethanesulfonate (BES) inhibition of methanogenesis from methanol by resting-cell suspensions or cell extracts of Methanosarcina was reversed by coenzyme M. BES inhibition of methylcoenzyme M methylreductase activity in cell-free extracts was reversed by methylcoenzyme M but not by coenzyme M. Methanol/coenzyme M methyltransferase activity was not inhibited by 10 microM BES. Inhibition of methylreductase by BES and 3-bromopropionate was competitive with methylcoenzyme M, but inhibition by 2-bromoethanol exhibited mixed kinetics. The Ki values for the inhibitors in cell-free extracts were similar to the concentrations which inhibited intact cells. BES-resistant mutants of strain 227 were apparently permeability mutants because in vitro assays showed that mutant and parent strain methylreductases were equally sensitive to BES.  相似文献   

10.
Methyl-coenzyme M reductase (MCR), which catalyses the reduction of methyl-coenzyme M (CH(3)-S-CoM) with coenzyme B (H-S-CoB) to CH(4) and CoM-S-S-CoB, contains the nickel porphinoid F430 as prosthetic group. The active enzyme exhibits the Ni(I)-derived axial EPR signal MCR(red1) both in the absence and presence of the substrates. When the enzyme is competitively inhibited by coenzyme M (HS-CoM) the MCR(red1) signal is partially converted into the rhombic EPR signal MCR(red2). To obtain deeper insight into the geometric and electronic structure of the red2 form, pulse EPR and ENDOR spectroscopy at X- and Q-band microwave frequencies was used. Hyperfine interactions of the four pyrrole nitrogens were determined from ENDOR and HYSCORE data, which revealed two sets of nitrogens with hyperfine couplings differing by about a factor of two. In addition, ENDOR data enabled observation of two nearly isotropic (1)H hyperfine interactions. Both the nitrogen and proton data indicate that the substrate analogue coenzyme M is axially coordinated to Ni(I) in the MCR(red2) state.  相似文献   

11.
Sodium 2-bromoethanesulfonate (BES), a structural analog of 2-mercaptoethanesulfonate (coenzyme M), inhibited methanogenesis and growth ofMethanosarcina strain 227 in the presence of H2/CO2, methanol, or acetate. A single exposure to 24 M BES was sufficient to produce cultures resistant to 240 M BES. Wild-type cultures inhibited by 200 M BES (or less) resumed growth and methane production when coenzyme M (coM) was added to the culture medium. Cultures incubated one week or longer with 200 M BES (or less) spontaneously resumed growth and methanogenesis in the presence of H2/CO2, methanol, or acetate without added coM. BES resistance was heritable and not the result of inactivation or decomposition of BES. BES resistance acquired on one methanogenic substrate was retained when cells were grown on a different methanogenic substrate. However, BES resistance did not confer multiple resistance to other halomethane compounds such as chloroform, 2-bromoethanol, 2-bromopropionic acid, and chloramphenicol. BES resistance varied in two other genera of methanogens tested. One strain ofMethanospirillum hungatei was very sensitive to BES, and no resistant mutants were demonstrated. One strain ofMethanobacterium formicicum, however, was resistant to 200 M BES without any known prior exposure to BES.  相似文献   

12.
A fraction previously isolated from acid-treated supernatant fraction of Methanobacterium thermoautotrophicum by DEAE-Sephadex chromatography [Sauer, Mahadevan & Erfle (1984) Biochem. J. 221, 61-97] which was absolutely required for methane synthesis, has been separated into two compounds, tetrahydromethanopterin (H4MPT) and an as-yet-unidentified cofactor we call 'cytoplasmic cofactor'. H4MPT was identified by its u.v. spectrum and by 13C- and 1H-n.m.r. spectroscopy. The reduction of 2-(methylthio)ethanesulphonic acid (CH3-S-CoM) to methane by the membrane fraction from M. thermoautotrophicum was completely dependent on the addition of cytoplasmic cofactor. Methane synthesis from CO2, however, was only partially dependent on cofactor addition, and 57% of the original activity was retained in its absence. The kinetics of 14C labelling were consistent with the scheme methyl-H4MPT----CH3-S-CoM----methane, as has been proposed. This is the first time that direct experimental evidence has been presented to show that the proposed methyl transfer from H4MPT to coenzyme M (HS-CoM) actually occurs.  相似文献   

13.
Biochemistry of methanogenesis.   总被引:9,自引:0,他引:9  
Methane is a product of the energy-yielding pathways of the largest and most phylogenetically diverse group in the Archaea. These organisms have evolved three pathways that entail a novel and remarkable biochemistry. All of the pathways have in common a reduction of the methyl group of methyl-coenzyme M (CH3-S-CoM) to CH4. Seminal studies on the CO2-reduction pathway have revealed new cofactors and enzymes that catalyze the reduction of CO2 to the methyl level (CH3-S-CoM) with electrons from H2 or formate. Most of the methane produced in nature originates from the methyl group of acetate. CO dehydrogenase is a key enzyme catalyzing the decarbonylation of acetyl-CoA; the resulting methyl group is transferred to CH3-S-CoM, followed by reduction to methane using electrons derived from oxidation of the carbonyl group to CO2 by the CO dehydrogenase. Some organisms transfer the methyl group of methanol and methylamines to CH3-S-CoM; electrons for reduction of CH3-S-CoM to CH4 are provided by the oxidation of methyl groups to CO2.  相似文献   

14.
The stimulation of carbon dioxide reduction to methane by addition of 2-(methylthio)ethanesulfonate (CH3-S-CoM) to cell extracts of Methanobacterium thermoautotrophicum was investigated. Similar stimulation of CO2 reduction by CH3-S-CoM was found for cell extracts of Methanobacterium bryantii and Methanospirillum hungatei. The CH3-S-CoM requirement could be met by the methanogenic precursors formaldehyde, serine, or pyruvate, or by 2-(ethylthio)ethanesulfonate (CH3CH2-S-CoM), but not by other coenzyme M derivatives. Efficient reduction of CO2 to CH4 was favored by low concentrations of CH3-S-CoM and high concentrations of CO2. Sulfhydryl compounds were identified as effective inhibitors of CO2 reduction. Both an allosteric model and a free-radical model for the mechanism of CO2 activation and reduction are discussed.  相似文献   

15.
Methyl-coenzyme M reductase (= component C) from Methanobacterium thermoautotrophicum (strain Marburg) was highly purified via anaerobic fast protein liquid chromatography on columns of Mono Q and Superose 6. The enzyme was found to catalyze the reduction of methylcoenzyme M (CH3-S-CoM) with N-7-mercaptoheptanoylthreonine phosphate (H-S-HTP = component B) to CH4. The mixed disulfide of H-S-CoM and H-S-HTP (CoM-S-S-HTP) was the other major product formed. The specific activity was up to 75 nmol min-1 mg protein-1. In the presence of dithiothreitol and of reduced corrinoids or titanium(III) citrate the specific rate of CH3-S-CoM reduction to CH4 with H-S-HTP increased to 0.5-2 mumol min-1 mg protein-1. Under these conditions the CoM-S-S-HTP formed from CH3-S-CoM and H-S-HTP was completely reduced to H-S-CoM and H-S-HTP. Methyl-CoM reductase was specific for H-S-HTP as electron donor. Neither N-6-mercaptohexanoylthreonine phosphate (H-S-HxoTP) nor N-8-mercaptooctanoylthreonine phosphate (H-S-OcoTP) nor any other thiol compound could substitute for H-S-HTP. On the contrary, H-S-HxoTP (apparent Ki = 0.1 microM) and H-S-OcoTP (apparent Ki = 15 microM) were found to be effective inhibitors of methyl-CoM reductase, inhibition being non-competitive with CH3-S-CoM and competitive with H-S-HTP.  相似文献   

16.
The 2-(methylthio)ethanesulfonic acid (CH3-S-CoM) reductase catalyzes the final methane-yielding reaction in fastidiously anaerobic methanogenic archaebacteria. This step involves the reductive demethylation of CH3-S-CoM with reducing equivalents from N-7-(mercaptoheptanoyl)-L-threonine O3-phosphate (HS-HTP) to yield methane and the nonsymmetrical disulfide of 2-mercaptoethanesulfonic acid and HS-HTP. We chemically synthesized modified analogs of CH3-S-CoM (which has two carbons in the ethylene bridge) and of HS-HTP (which has seven carbons in the side chain); analog pairs possessed an overall correct number of side chain carbons (i.e., a total of nine in combination). They were simultaneously added to anaerobic cell extracts of Methanobacterium thermoautotrophicum delta H. The ability of the extracts to reductively demethylate the modified substrates was tested by gas chromatography. We also describe here previously unknown inhibitors of methanogenesis, 6-(methylthio)hexanoyl-L-threonine O3-phosphate (a structural analog of HS-HTP) and sodium bromomethanesulfonic acid (a structural analog of CH3-S-CoM). Both analogs were found to be effective competitive inhibitors with respect to HS-HTP. These substrate analogs were also found to inhibit a recently described photoactivation of homogeneous inactive reductase (K. D. Olson, C. W. McMahon, and R. S. Wolfe, Proc. Natl. Acad. Sci. USA 88:4099-4103, 1991). In addition, we probed the mechanism of action of a potent inhibitor of the enzyme, 2-bromoethanesulfonic acid, a structural analog of CH3-S-CoM.  相似文献   

17.
The sensitivity of the requirement of Methanobacterium ruminantium strain M1 to a new coenzyme, 2-mercaptoethanesulfonic acid (HS-CoM) was examined by use of new techniques that were developed for rapid and efficient handling of large numbers of cultures of methanogenic bacteria. The system uses sealed tubes that contain a gas mixture of 80% hydrogen and 20% carbon dioxide under a pressure of 2 to 3 atm. This modification of the Hungate technique reduces variability among replicate cultures and simplifies the dispensing, sterilization, and storage of liquid media as well as the transfer and maintenance of methanogenic bacteria. Results indicate a limit of sensitivity of the assay at 5 nM HS-CoM, with half-maximal growth at 25 nM HS-CoM. Coenzyme activity could be replaced by 2,2'-dithiodiethanesulfonic acid at a half-molar equivalent of the HS-CoM concentration, or by 2-(methylthio)ethanesulfonic acid on an equimolar basis. These data reveal a very sensitive and precise requirement for HS-CoM in the nutrition of this fastidious anaerobe.  相似文献   

18.
Aspergillus mutants resistant to various purine analogues (purine, 8-azaguanine, 2-thioxanthine, and 2-thiouric acid) are defective in at least one step of purine uptake or breakdown. The properties of these mutants show that there are two uptake systems for purines, one which mediates the uptake of hypoxanthine, guanine, and adenine, and the other, xanthine and uric acid. Allantoinase-less strains are sensitive to the toxic effects of allantoin accumulation. They are severely inhibited when grown in the presence of naturally occurring purines. Mutant strains derived from these, resistant to naturally occurring purines, may be isolated. These are either wild-type revertants, or carry a second metabolic block in the uptake or breakdown of purines. The properties of these double mutants confirm the interpretation of the nature of the analogue-resistant mutants.  相似文献   

19.
AIMS: To examine the effects of five inhibitors of methanogenesis, 2-bromoethanesulphonate (BES), 3-bromopropanesulphonate (BPS), lumazine, propynoic acid and ethyl 2-butynoate, on CH4 production of the ruminal methanogens Methanobrevibacter ruminantium, Methanosarcina mazei and Methanomicrobium mobile. METHODS AND RESULTS: Methanogens were grown in MS medium including 25% (v/v) clarified ruminal fluid. Methane production was measured after 4 and 6 days of incubation. Methanobrevibacter ruminantium was the most sensitive species to BES, propynoic acid and ethyl 2-butynoate. Methanosarcina mazei was the least sensitive species to those chemical additives, and Mm. mobile was intermediate. BPS failed to inhibit any of the methanogens. All three species were almost completely inhibited by 50- and 100%-lumazine saturated media, but the inhibition was somewhat lower with a 25%-lumazine saturated media. CONCLUSIONS: There were important differences among species of methanogens regarding their sensitivity to the different inhibitors. In general, Ms. mazei was the most resistant to inhibitors, Mb. ruminantium the least resistant, and Mm. mobile was intermediate. SIGNIFICANCE AND IMPACT OF THE STUDY: Differences among methanogens regarding their resistance to chemical inhibitors should be considered when designing strategies of inhibition of ruminal methanogenesis, as selection of resistant species may result.  相似文献   

20.
The genome of Methanosarcina acetivorans encodes three homologs, initially annotated as hypothetical fused corrinoid/methyl transfer proteins, which are highly elevated in CO-grown cells versus cells grown with alternate substrates. Based only on phenotypic analyses of deletion mutants, it was previously concluded that the homologs are strictly dimethylsulfide:coenzyme M (CoM) methyltransferases not involved in the metabolism of CO (E. Oelgeschlager and M. Rother, Mol. Microbiol. 72:1260 -1272, 2009). The homolog encoded by MA4383 (here designated CmtA) was reexamined via biochemical characterization of the protein overproduced in Escherichia coli. Purified CmtA reconstituted with methylcob(III)alamin contained a molar ratio of cobalt to protein of 1.0 ± 0.2. The UV-visible spectrum was typical of methylated corrinoid-containing proteins, with absorbance maxima at 370 and 420 nm and a band of broad absorbance between 450 and 600 nm with maxima at 525, 490, and 550 nm. CmtA reconstituted with aquocobalamin showed methyl-tetrahydromethanopterin:CoM (CH(3)-THMPT:HS-CoM) methyltransferase activity (0.31 μmol/min/mg) with apparent K(m) values of 135 μM for CH(3)-THMPT and 277 μM for HS-CoM. The ratio of CH(3)-THMPT:HS-CoM methyltransferase activity in the soluble versus membrane cellular fractions was 15-fold greater in CO-grown versus methanol-grown cells. A mutant strain deleted for the CmtA gene showed lower growth rates and final yields when cultured with growth-limiting partial pressures of CO, demonstrating a role for CmtA during growth with this substrate. The results establish that CmtA is a soluble CH(3)-THSPT:HS-CoM methyltransferase postulated to supplement the membrane-bound CH(3)-THMPT:HS-CoM methyltransferase during CO-dependent growth of M. acetivorans. Thus, we propose that the name of the enzyme encoded by MA4384 be CmtA (for cytoplasmic methyltransferase).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号