首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properdin, which stabilizes the C3 convertase during the activation of the alternate complement pathway, contains amino acid sequence homologies with several proteins that bind sulfated glycoconjugates, including the adhesive protein thrombospondin and the leech salivary protein antistasin. This homology is based around the sequence Cys-Ser-Val-Thr-Cys-Gly-X-Gly-X-X-X-Arg-X-Arg. To determine if these homologous amino acid sequences are sulfated glycoconjugate-binding domains, purified native properdin, as well as activated properdin (a high molecular weight form of properdin), were examined for binding to various lipids in solid phase radioimmunoassays. Of the lipids tested, both native and activated properdin bind with high affinity only to sulfatide [Gal(3-SO4)beta 1-1 Cer], but not to comparable levels of cholesterol-3-SO4, or several neutral glycolipids, gangliosides, and phospholipids. Sulfatide binding by both forms of properdin is inhibited by dextran sulfate (Mr = 500,000) or fucoidan, whereas only the activated form is inhibited by dextran sulfate (Mr = 5,000) or heparin. Comparable levels of chondroitin sulfates A, B, and C, keratan sulfate, dextran (Mr = 90,000), or hyaluronic acid do not inhibit binding. Taken together, these data suggest that properdin, like antistasin and thrombospondin, binds sulfated glycoconjugates and supports the conclusion that the homologous sequences are sulfated glycoconjugate-binding domains.  相似文献   

2.
Leech-derived antistasin is a potent anticoagulant and antimetastatic protein that binds sulfatide (Gal(3-SO4)beta 1-1Cer) and sulfated polysaccharides. In this study, the synthetic fragment [A103,106,108] antistasin 93-119, which corresponds to the carboxyl terminus, showed specific and saturable binding to sulfatide. Binding was competitively blocked by glycosaminoglycans (GAGs) in the order: dextran sulfate 5000 congruent to dextran sulfate 500,000 greater than heparin greater than dermatan sulfate much greater than chondroitin sulfates A and C. This rank order of inhibitory potency was identical to that observed with whole antistasin. We suggest that residues 93-119 of antistasin represent a critical domain for binding GAGs and sulfated glycolipids.  相似文献   

3.
Antistasin is a 119 amino acid heparin-binding protein from the leech Haementaria officinalis which has anticoagulant and antimetastatic properties. A series of peptides representing the basic amino acid-rich domains of the amino- and carboxyl-terminal regions of the inhibitor were synthesized by solid-phase peptide chemistry and their ability to bind sulfated glycolipids was investigated. The findings show that [A103,106,108] antistasin 93-119 has high affinity for sulfatide and inhibits the specific interaction of whole antistasin with [Gal(3-SO4)beta 1-1Cer]. We conclude that the 93-119 region is a critical domain that mediates the interaction of antistasin with sulfated glycolipids.  相似文献   

4.
A laminin-binding peptide (peptide G), predicted from the cDNA sequence for a 33-kDa protein related to the 67-kDa laminin receptor, specifically inhibits binding of laminin to heparin and sulfatide. Since the peptide binds directly to heparin and inhibits interaction of another heparin-binding protein with the same sulfated ligands, this inhibition is due to direct competition for binding to sulfated glycoconjugates rather than an indirect effect of interaction with the binding site on laminin for the 67-kDa receptor. Direct binding of laminin to the peptide is also inhibited by heparin. This interaction may result from contamination of the laminin with heparan sulfate, as binding is enhanced by the addition of substoichiometric amounts of heparin but inhibited by excess heparin and two heparin-binding proteins. Furthermore, laminin binds more avidly to a heparin-binding peptide derived from thrombospondin than to the putative receptor peptide. Adhesion of A2058 melanoma cells on immobilized peptide G is also heparin-dependent, whereas adhesion of the cells on laminin is not. Antibodies to the beta 1-integrin chain or laminin block adhesion of the melanoma cells to laminin but not to peptide G. Thus, the reported inhibition of melanoma cell adhesion to endothelial cells by peptide G may result from inhibition of binding of laminin or other proteins to sulfated glycoconjugate receptors rather than from specific inhibition of laminin binding to the 67-kDa receptor.  相似文献   

5.
Circumsporozoite (CS) proteins, which densely coat malaria (Plasmodia) sporozoites, contain an amino acid sequence that is homologous to segments in other proteins which bind specifically to sulfated glycoconjugates. The presence of this homology suggests that sporozoites and CS proteins may also bind sulfated glycoconjugates. To test this hypothesis, recombinant P. yoelii CS protein was examined for binding to sulfated glycoconjugate-Sepharoses. CS protein bound avidly to heparin-, fucoidan-, and dextran sulfate-Sepharose, but bound comparatively poorly to chondroitin sulfate A- or C-Sepharose. CS protein also bound with significantly lower affinity to a heparan sulfate biosynthesis-deficient mutant cell line compared with the wild-type line, consistent with the possibility that the protein also binds to sulfated glycoconjugates on the surfaces of cells. This possibility is consistent with the observation that CS protein binding to hepatocytes, cells invaded by sporozoites during the primary stage of malaria infection, was inhibited by fucoidan, pentosan polysulfate, and heparin. The effects of sulfated glycoconjugates on sporozoite infectivity were also determined. P. berghei sporozoites bound specifically to sulfatide (galactosyl[3-sulfate]beta 1-1ceramide), but not to comparable levels of cholesterol-3-sulfate, or several examples of neutral glycosphingolipids, gangliosides, or phospholipids. Sporozoite invasion into hepatocytes was inhibited by fucoidan, heparin, and dextran sulfate, paralleling the observed binding of CS protein to the corresponding Sepharose derivatives. These sulfated glycoconjugates blocked invasion by inhibiting an event occurring within 3 h of combining sporozoites and hepatocytes. Sporozoite infectivity in mice was significantly inhibited by dextran sulfate 500,000 and fucoidan. Taken together, these data indicate that CS proteins bind selectively to certain sulfated glycoconjugates, that sporozoite infectivity can be inhibited by such compounds, and that invasion of host hepatocytes by sporozoites may involve interactions with these types of compounds.  相似文献   

6.
Antistasin is a 15-kDa protein from the salivary glands of the Mexican leech, Haementeria officinalis, which manifests anticoagulant activity by inhibiting factor Xa. Previous work demonstrating the presence of this activity in salivary gland extracts and its partial purification has been reported (Tuszynski, G. P., Gasic, T. B, and Gasic, G.J. (1987) J. Biol. Chem. 262, 9718-9723). The present study includes further purification to homogeneity of antistasin and its subsequent fragmentation and complete amino acid sequence determination. The protein, which possesses 119 amino acid residues, is blocked at its amino terminus by the presence of a pyroglutamic acid residue and has an unusually high cysteine content, with 20 cysteine residues. The primary structure of antistasin shows no homology to hirudin, a 65-residue anticoagulant protein from the medicinal leech, Hirudo medicinalis. Of great interest is the finding of significant internal homology within antistasin where a 2-fold internal repeated structure is observed. At least four isoforms of antistasin have been identified in leech salivary gland extracts by high performance liquid chromatography analysis, and partial amino acid sequence analysis of these isoforms indicates they differ by 1 or 2 amino acid residues.  相似文献   

7.
The adhesive glycoproteins laminin, thrombospondin, and von Willebrand factor bind specifically and with high affinity to sulfated glycolipids. These three glycoproteins differ, however, in their sensitivity to inhibition of binding by sulfated monosaccharides and polysaccharides. Heparin strongly inhibits binding of thrombospondin but only weakly inhibits binding of laminin and von Willebrand factor. Fucoidan strongly inhibits binding of both laminin and thrombospondin but not of von Willebrand factor. Laminin shows significant specificity for inhibition by monosaccharides, whereas thrombospondin does not. Thus, specific spacial orientations of sulfate esters may be primary determinants of binding for the three proteins. Laminin, thrombospondin, and von Willebrand factor also differ in their relative binding affinities for purified sulfated glycosphingolipids. The three proteins strongly prefer terminal-sulfated lipids and bind only weakly to sulfated gangliotriaosyl ceramide with a sulfate ester on the penultimate galactose. Thrombospondin binds with highest affinity to galactosyl sulfatide but only weakly to more complex sulfatides, whereas von Willebrand factor prefers galactosyl sulfatide but binds with moderate affinity to various sulfated glycolipids. Laminin also is less selective than thrombospondin but is less sensitive for detection of low sulfatide concentrations. Galactosyl sulfatide at 1-5 pmol can be detected by staining of lipids separated on high performance TLC with 125I-thrombospondin or 125I-von Willebrand factor. 125I-von Willebrand factor was examined as a reagent for detecting sulfated glycolipids in tissue extracts. Rat kidney lipids contain 5 characterized sulfated glycolipids: galactosyl ceramide I3-sulfate, lactosyl ceramide II3-sulfate, gangliotriaosyl ceramide II3-sulfate, and bis-sulfated gangliotriaosyl and gangliotetraosyl ceramides. von Willebrand factor detects all of these lipids as well as several additional minor sulfated lipids. Complex monosulfated lipids are detected in several human tissues including kidney, erythrocytes, and platelets by this technique.  相似文献   

8.
Midkine is a heparin-binding polypeptide which is implicated in the control of development and repair of various tissues. Recognition of sulfate groups in glycosaminoglycans is important for its function. To elucidate further its mechanism of action, the interactions of midkine with sulfated glycolipids were studied. Of various glycolipids and lipids examined, midkine bound strongly to sulfatide and cholesterol-3-sulfate (CHO-3-SO4) in a dose-dependent manner but failed to bind to other standard glycolipids and lipids. The properties of midkine binding to sulfatide and to CHO-3-SO4 differed in their sensitivity to inhibition by anionic polysaccharides, salt concentration and unlabeled midkine. Heparin inhibited midkine binding to sulfatide but weakly inhibited its binding to CHO-3-SO4. Liposomes bearing sulfatide carried out significant interactions with immobilized midkine, whereas those bearing CHO-3-SO4 did not. Incorporation of sulfatide into 32D cells and trypsinized COS cells enhanced 125I-labelled midkine binding, whereas incorporation of ganglioside or galactosylceramide had no effect. Furthermore, sulfatide-incorporated cells enhanced cell attachment to midkine-coated coverslips. These results indicate that midkine binds to sulfatide under physiological conditions and the midkine-sulfatide interaction may be important in controlling cell attachment.  相似文献   

9.
V Ginsburg  D D Roberts 《Biochimie》1988,70(11):1651-1659
The adhesive glycoproteins laminin, thrombospondin and von Willebrand's factor bind specifically and with high affinity to sulfated glycolipids, and it is this binding that probably accounts for their ability to agglutinate glutaraldehyde-fixed erythrocytes. The 3 proteins differ, however, in the effect of sulfated polysaccharides on their binding to sulfatides. Fucoidan strongly inhibits binding of both laminin and thrombospondin, but not of von Willebrand's factor, suggesting the involvement of laminin or thrombospondin or other unknown sulfatide-binding proteins in specific cell interactions that are also inhibited by fucoidan. Thrombospondin adsorbed onto plastic promotes the attachment and spreading of G361 melanoma cells. Interestingly, fucoidan and an antibody directed against the sulfatide-binding domain of thrombospondin selectively inhibit spreading but not attachment. Sulfatides, but not neutral glycolipids or gangliosides, when adsorbed onto plastic also promote attachment and spreading of G361 melanoma cells. Direct adhesion of G361 cells requires high densities of sulfatide. In the presence of laminin, however, specific adhesion of G361 cells to sulfatide is strongly stimulated and requires only low densities of adsorbed lipid, suggesting that laminin mediates adhesion by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed onto the plastic. Although thrombospondin binds to sulfatide and to G361 cells, it does not enhance but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide, presumably because it is unable to bind simultaneously to ligands on opposing surfaces. Thus, sulfated glycoconjugates participate in both laminin- and thrombospondin-mediated cell adhesion, but their mechanisms of interaction are different.  相似文献   

10.
The human platelet glycoprotein thrombospondin (TSP) binds specifically and with high affinity to sulfatides (galactosylceramide-I3-sulfate). Binding of 125I-TSP to lipids from sheep and human erythrocytes and human platelets resolved on thin layer chromatograms indicates that sulfatides are the only lipids in the membrane which bind TSP. Binding to less than 2 ng of sulfatide could be detected. TSP failed to bind to other purified lipids including cholesterol 3-sulfate, phospholipids, neutral glycolipids, and gangliosides. Binding of 125I-TSP was inhibited by unlabeled TSP, by low pH, and by reduction of intersubunit disulfide bonds with dithiothreitol. A monoclonal antibody against TSP (A2.5), which inhibits hemagglutination and agglutination of fixed activated platelets by TSP, strongly inhibited TSP binding to sulfatides. A second monoclonal antibody (C6.7), which inhibits hemagglutination and aggregation of thrombin-activated live platelets, weakly inhibited sulfatide binding. Binding was inhibited by high ionic strength and by some monosaccharide sulfates including methyl-alpha-D-GlcNAc-3-sulfate. Neutral sugars did not inhibit. Fucoidan, a sulfated fucan, strongly inhibited binding with 50% inhibition at 0.3 micrograms/ml fucoidan. Other sulfated polysaccharides including heparin and dextran sulfates were good inhibitors, whereas hyaluronic acid and keratan sulfate were very weak.  相似文献   

11.
A virulent strain of Mycoplasma pneumoniae was metabolically labeled with [3H]palmitate and studied for binding to glycolipids and to WiDr human colon adenocarcinoma cells. The organism binds strongly to sulfatide and other sulfated glycolipids, such as seminolipid and lactosylsulfatide which all contain terminal Gal(3SO4) beta 1-residues and weakly to some neolactoseries neutral glycolipids. M. pneumoniae do not bind gangliosides including the sialylneolacto-series and other neutral glycolipids that were tested. Only metabolically active M. pneumoniae cells bind to sulfatide, as binding is maximal in RPMI medium at 37 degrees C and almost completely abolished in nutrient-deficient medium or by keeping the cells at 4 degrees C. Dextran sulfate but not other sulfated or anionic polysaccharides at 10 micrograms/ml completely inhibits binding of M. pneumoniae to purified sulfatide. Dextran sulfate does not inhibit binding to the neolacto-series neutral glycolipids. Dextran sulfate partially inhibits adhesion of M. pneumoniae to cultured human colon adenocarcinoma cells (WiDr). The biological relevance of these data is suggested by our finding that sulfatide occurs in large amounts in human trachea, lung, and WiDr cells. Thus, there are at least two distinct receptors that mediate binding of M. pneumoniae to cells: glycolipids containing terminal Gal(3SO4) beta 1-residues as reported here, and glycoproteins containing terminal NeuAc alpha 2-3Gal beta 1-4GlcNAc sequences (Roberts, D. D., Olson, L. D., Barile, M. F., Ginsburg, V., and Krivan, H. C. (1989) J. Biol. Chem. 264, 9289-9293).  相似文献   

12.
Congo red and certain sulfated glycans are potent inhibitors of protease-resistant PrP accumulation in scrapie-infected cells. One hypothesis is that these inhibitors act by blocking the association between protease-resistant PrP and sulfated glycosaminoglycans or proteoglycans (e.g., heparan sulfate proteoglycan) that is observed in amyloid plaques of scrapie-infected brain tissue. Accordingly, we have investigated whether the apparent precursor of protease-resistant PrP, protease-sensitive PrP, binds to Congo red and heparin, a highly sulfated glycosaminoglycan with an inhibitory potency like that of heparan sulfate. Protease-sensitive PrP released from the surface of mouse neuroblastoma cells bound to heparin-agarose and Congo red-glass beads. Sucrose density gradient fractionation provided evidence that at least some of the PrP capable of binding heparin-agarose was monomeric. Free Congo red blocked PrP binding to heparin and vice versa, suggesting that these ligands share a common binding site. The relative efficacies of pentosan polysulfate, Congo red, heparin, and chondroitin sulfate in blocking PrP binding to heparin-agarose corresponded with their previously demonstrated potencies in inhibiting protease-resistant PrP accumulation. These results are consistent with the idea that sulfated glycans and Congo red inhibit protease-resistant PrP accumulation by interfering with the interaction of PrP with an endogenous glycosaminoglycan or proteoglycan.  相似文献   

13.
Characteristics of Mycoplasma hominis adhesion.   总被引:3,自引:0,他引:3       下载免费PDF全文
Mycoplasma hominis, a human pathogen, has previously been observed to bind to sulfatide separated on thin-layer chromatograms. It has not been demonstrated, however, that the binding is not simply a nonspecific ionic interaction. The ability of a low-passage patient isolate of M. hominis to adhere to glycoconjugates other than sulfatide and the characteristics of its binding to sulfatide were studied. Mycoplasmas were found to bind strongly and specifically in a temperature- and dose-dependent manner to only sulfatide of all of the glycolipids and glycoproteins tested. The avidity and specificity of binding, as well as the ability to inhibit the interaction specifically, suggest that the receptors to which M. hominis binds, particularly in the human urogenital tract, from which it is frequently isolated, are primarily, if not solely, sulfated glycolipids.  相似文献   

14.
Sulfoglucuronyl Glycolipids Bind Laminin   总被引:5,自引:1,他引:4  
Previous studies have shown that HNK-1 antibody reactive glycoconjugates, including the glycolipids 3-sulfoglucuronylneolactotetraosylceramide (SGGL-1) and 3-sulfoglucuronylneolactohexaosylceramide (SGGL-2), are temporally and spatially regulated antigens in the developing mammalian cortex. Extracellular matrix glycoprotein laminin is involved in cell adhesion by interacting with cell surface components and also promotes neurite outgrowth. Laminin has been shown to bind sulfatide. The interaction of sulfated glycolipids SGGL-1 and SGGL-2 with laminin was studied by employing a solid-phase radioimmunoassay and by HPTLC-immunoblotting. Laminin binding was detected with anti-laminin antibodies followed by 125I-labelled Protein A and autoradiography. Laminin binds SGGL-1 and SGGL-2, besides sulfatide, but does not bind significantly gangliosides and neutral glycolipids. The binding of SGGLs to laminin was two to three times less compared to sulfatide when compared on a molar basis. Desulfation of SGGLs and sulfatide by mild acid treatment resulted in abolition of laminin binding. On the other hand, chemical modification of glucuronic acid moiety by either esterification or reduction of the carboxyl group had no effect. This showed that the sulfate group was essential for laminin binding. Of the various glycosaminoglycans tested, only heparin inhibited the binding of laminin to SGGLs and sulfatide in a dose-dependent manner. This indicated that SGGLs and sulfatide bind to the heparin binding site present in the laminin molecule. The availability of HNK-1 reactive glycolipids and glycoproteins such as SGGLs and several neural cell adhesion molecules to bind laminin at critical stages of neural development may serve as important physiological signals.  相似文献   

15.
The mechanisms of sperm adhesion and release within the mammalian oviduct are still poorly understood. In this in vitro study, a previously developed adhesion assay was used to analyze the effects of heparin, N-desulfated heparin, fucoidan, dextran sulfate, and dextran on bovine sperm-oviductal cell adhesion and release. Results showed that 1) all sulfated glycoconjugates were powerful inhibitors of sperm binding to oviductal monolayers in a dose-dependent manner, whereas N-desulfated heparin and dextran had no effect; 2) sperm pretreatment with heparin and fucoidan markedly inhibited adhesion; 3) treatment of oviductal monolayers with heparinase I, II, or sodium chlorate (an inhibitor of sulfation) had no effect on sperm adhesion; 4) sulfated glycoconjugates were also powerful and quick inducers of sperm release from oviductal monolayers; and 5) addition of sulfated glycoconjugates to the cocultures caused a sudden increase of bound-sperm flagellar beat frequencies, followed by a release of highly motile sperm. In conclusion, these data support the hypothesis that sulfated glycoconjugates may act as signals that induce sperm release and migration from the oviductal reservoir.  相似文献   

16.
The effects of sulfated glycoconjugates on the preparation of mammalian sperm for fertilization were investigated. The three sulfated glycoconjugates tested were heparin, dextran sulfate, and the fucose sulfate glycoconjugate (FSG) from the sea urchin egg jelly coat. In vivo, FSG induces the acrosome reaction in sea urchin sperm. Bovine sperm were found to be capacitated by heparin and FSG as judged both by ability of lysophosphatidylcholine (LC) to induce an acrosome reaction and by ability to fertilize bovine oocytes in vitro. The mechanism by which heparin or FSG capacitated bovine sperm appeared similar, since glucose inhibited capacitation by both glycoconjugates. In contrast to effects on bovine sperm, heparin and FSG induced the acrosome reaction in capacitated hamster sperm. When hamster sperm were incubated under noncapacitating conditions, heparin had no effect on capacitation or the acrosome reaction. Three molecular weights (MW) of dextran sulfate (5,000, 8,000, 500,000) were found to capacitate bovine sperm as judged by the ability of LC to induce an acrosome reaction. Whereas bovine sperm incubated with 5,000 or 8,000 M W dextran sulfate fertilized more bovine oocytes than control sperm (P <0.05), sperm treated with 500,000 M W dextran sulfate failed to penetrate oocytes. The high-MW dextran sulfate appeared to interact with the zona pellucida and/or sperm to prevent sperm binding. Results suggest that sulfated glycoconjugates may prepare sperm for fertilization across a wide range of species.  相似文献   

17.
Annexin A1 is a multifunctional, calcium-dependent phospholipid binding protein involved in a host of processes including inflammation, regulation of neuroendocrine signaling, apoptosis, and membrane trafficking. Binding of annexin A1 to glycans has been implicated in cell attachment and modulation of annexin A1 function. A detailed characterization of the glycan binding preferences of annexin A1 using carbohydrate microarrays and surface plasmon resonance served as a starting point to understand the role of glycan binding in annexin A1 function. Glycan array analysis identified annexin A1 binding to a series of sulfated oligosaccharides and revealed for the first time that annexin A1 binds to sulfated non-glycosaminoglycan carbohydrates. Using heparin/heparan sulfate microarrays, highly sulfated heparan sulfate/heparin were identified as preferred ligands of annexin A1. Binding of annexin A1 to heparin/heparan sulfate is calcium- but not magnesium-dependent. An in-depth structure-activity relationship of annexin A1-heparan sulfate interactions was established using chemically defined sugars. For the first time, a calcium-dependent heparin binding protein was characterized with such an approach. N-Sulfation and 2-O-sulfation were identified as particularly important for binding.  相似文献   

18.
Dextran sulfate, heparin, and certain other sulfated polysaccharides potently inhibit the adsorption of HIV to CD4+ cells. The mechanism of this inhibition is unclear and, specifically, it is unknown if these agents act at the level of CD4-gp120 binding. For example, previous reports have demonstrated that dextran sulfate does not inhibit the cell surface binding of anti-CD4 mAb known to be directed at the gp120 binding site. In order to confirm and extend these observations, in the present study, it was shown that dextran sulfate does not inhibit the binding of OKT4A, OKT4C, Leu3a, or B66.6 to CD4+ cells as measured by cytofluorography. Next, recombinant forms of CD4 (rT4) and gp120 (rgp120) were utilized to directly study their molecular interaction in the absence of other viral or cellular structures. Reciprocal solid phase ELISA assays were developed to study directly the effects of sulfated polysaccharides on the binding of rT4 to immobilized rgp120 and vice versa. Dextran sulfate, heparin, and fucoidan, but not chondroitin sulfate, inhibited the binding of rgp120 to rT4. Importantly, dextran sulfate and heparin pre-treatment of immobilized rT4, but not immobilized rgp120, inhibited rT4-rgp120 binding. Taken together, these data suggest that while both sulfated polysaccharides and anti-CD4 mAb inhibit gp120 binding, the sulfated polysaccharides interact with sites on CD4 that are distinct from those with which the antibodies bind.  相似文献   

19.
The purification and characterization of a low-molecular-mass binding protein from female guinea-pig liver cytosol is reported. Its molecular mass (14.4 kDa), amino acid composition, abundance and biological properties identify it as belonging to the Z class of liver cytosolic proteins [Levi, A.J., Gatmaitan, Z. & Arias, I.M. (1969) J. Clin. Invest. 48, 2956-2167]. Among the most important members of this class of proteins are the fatty-acid-binding proteins (FABPs) and the sterol carrier protein2 (SCP2). The guinea-pig Z protein (G-ZP) has some similarities in its amino acid composition and NH2-terminal sequence with those of the rat liver FABP, but its isoelectric point is basic (pI 8.85), like that of SCP2. We also examined its binding affinities for a number of ligands bound by these two proteins. The results show that the purified G-ZP binds dehydroepiandrosterone sulfate, estrone sulfate, oleic acid and cholesterol, but shows no affinity for free steroids such as estrone and DHEA. Thus it can be said that G-ZP has some characteristics of FABPs and some of SCP2 but seems, however, to be different from both these proteins. The purified G-ZP inhibits microsomal DHEA sulfate sulfatase activity in a mixed noncompetitive way. This protein could be involved in the transport and/or metabolism of sulfated steroids.  相似文献   

20.
Erythrocyte invasion is critical to the pathogenesis and survival of the malarial parasite, Plasmodium falciparum. This process is partly mediated by proteins that belong to the Duffy binding-like family, which are expressed on the merozoite surface. One of these proteins, BAEBL (also known as EBA-140), is thought to bind to glycophorin C in a sialic acid-dependent manner. In this report, by the binding assay between recombinant BAEBL protein and enzyme-treated erythrocytes, we show that the binding of BAEBL to erythrocytes is mediated primarily by sialic acid and partially through heparan sulfate (HS). Because BAEBL binds to several kinds of HS proteoglycans or purified HS, the BAEBL-HS binding was found to be independent of the HS proteoglycan peptide backbone and the presence of sialic acid moieties. Furthermore, both the sialic acid- and HS-dependent binding were disrupted by the addition of soluble heparin. This inhibition may be the result of binding between BAEBL and heparin. Invasion assays demonstrated that HS-dependent binding was related to the efficiency of merozoite invasion. These results suggest that HS functions as a factor that promotes the binding of BAEBL and merozoite invasion. Moreover, these findings may explain the invasion inhibition mechanisms observed following the addition of heparin and other sulfated glycoconjugates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号