首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenylate cyclase activity was demonstrated by means of electron microscopic cytochemistry in rat cortical synaptosomes incubated under various conditions. It was found that only the reaction at the postsynaptic density could be enhanced by noradrenaline and postmortem storage, while that on the presynaptic limiting membrane was insensitive to these effects but was affected selectively by vinblastine. On these grounds two different pools of cytochemically demonstrable adenylate cyclase activity were distinguished within the synaptic region.  相似文献   

2.
The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synaptosomes of Torpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5'-adenylyl imidodiphosphate as substrate and 5'-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of lead pyrophosphate precipitate.  相似文献   

3.
Summary The electron cytochemical demonstration of adenylate cyclase activity was carried out in rat cortical synaptosomes. Reaction product was found in 60–70% of the synaptosomes in three predominant localizations: (i) on the postsynaptic density; (ii) on the outer aspect of the synaptosomal membrane; (iii) inside the synaptosome. Results suggest that in addition to postsynaptic localization adenylate cyclase activity is cytochemically demonstrable also at presynaptic sites.  相似文献   

4.
Summary The lead pyrophosphate precipitation technique was used to visualize adenylate cyclase activity with the electron microscope in unfixed electric organ and synapto-somes ofTorpedo marmorata, with special attention to presynaptic membranes. Specificity of the deposition of reaction product was ensured by using 5′-adenylyl imidodiphosphate as substrate and 5′-guanylyl imidodiphosphate and sodium fluoride as activators. Under suitable conditions a reaction product was deposited on the Schwann cell, on presynaptic vesicles, on the inner side of membranes of cisternae and on glycogen granules of the presynaptic region of the endplate. In some cases, a precipitate was also found on postsynaptic membranes of the synaptic cleft and on mitochondria. In isolated synaptosomes localization of the reaction product was identical with that of minced tissue. However, most strikingly, on presynaptic membranes no precipitate was ever found, neither in pieces of electric organ nor in isolated synaptosomes. Furthermore, the extended membrane system of the postsynaptic region of the electroplax remained always free of leed pyrophosphate precipitate.  相似文献   

5.
Non-ionic detergents stimulated particulate guanylate cyclase activity in cerebral cortex of rat 8- to 12-fold while stimulation of soluble enzyme was 1.3- to 2.5-fold. Among various detergents, Lubrol PX was the most effective one. The subcellular distribution of guanylate cyclase activity was examined with or without 0.5% Lubrol PX. Without Lubrol PX two-thirds of the enzyme activity was detected in the soluble fraction. In the presence of Lubrol PX, however, two-thirds of guanylate cyclase activity was recovered in the crude mitochondrial fraction. Further fractionation revealed that most of the particulate guanylate cyclase activity was associated with synaptosomes. The sedimentation characteristic of the particulate guanylate cyclase activity was very close to those of choline acetyltransferase and acetylcholine esterase activities, two synaptosomal enzymes. When the crude mitochondrial fraction was subfractionated after osmotic shock, most of guanylate cyclase activity as assayed in the absence of Lubrol PX was released into the soluble fraction while the rest of the enzyme activity was tightly bound to synaptic membrane fractions. The total guanylate cyclase activity recovered in the synaptosomal soluble fraction was 6 to 7 times higher than that of the starting material. The specific enzyme activity reached more than 1000 pmol per min per mg protein, which was 35-fold higher than that of the starting material. The membrane bound guanylate cyclase activity was markedly stimulated by Lubrol PX. Guanylate cyclase activity in the synaptosomal soluble fraction, in contrast, was suppressed by the addition of Lubrol PX. The observation that most of guanylate cyclase activity was detected in synaptosomes, some of which was tightly bound to the synaptic membrane fraction upon hypoosmotic treatment, is consistent with the concept that cyclic GMP is involved in neural transmission.  相似文献   

6.
By comparison of activities measured with either intact or ruptured synaptosomes it was found that about half of the cerebral adenylate cyclase is presynaptic while all the membrane bound, cyclic AMP-stimulated protein kinase activity appears to be presynaptic with the cyclic AMP receptor facing inward.  相似文献   

7.
ADP-Ribosylation of Membrane Proteins in Cholinergic Nerve Terminals   总被引:2,自引:1,他引:1  
Abstract: Lysed Torpedo synaptosomes or washed synaptosomal membranes were incubated with [32P]NAD+ and subjected to electrophoresis on SDS-polyacrylamide gels. More than eight membrane proteins were ADP-ribosylated. The most intensely labeled proteins were those of Mr= 62,000 and 82,000. Radiolabeling was more intense in synaptosomes than in other subcel-lular fractions. Cholera toxin caused ribosylation of additional synaptosomal proteins with Mr= 42,000 and (in some preparations) 49,000. Neither endogenous nor cholera toxin-catalyzed ADP-ribosylation required added guanyl nu-cleotides. Cholera toxin increased the adenylate cyclase activity of synaptosomal membranes, suggesting that the cholera toxin substrates are regulatory components of adenylate cyclase in these synaptosomes.  相似文献   

8.
Under conditions minimizing the contribution of Na+/Ca2+ exchange to calcium entry in synaptosomes, the K+ depolarization-dependent calcium influx (JCa) is a single exponential function of time. JCa activates and slowly inactivates at membrane potentials positive to -50 mV, a result indicating the involvement of moderate voltage-activating, slowly inactivating calcium channels. Calcium channels in synaptosomes are characterized by stronger sensitivity to blockage by Cd2+ than Co2+, insensitivity to dihydropyridine calcium antagonists or the agonist Bay K 8644, and weak, partial sensitivity to the peptide toxin omega-conotoxin GVIA. These characteristics suggest that voltage-sensitive calcium channels in rat cerebrocortical synaptosomes are dissimilar from the somatic T, N, or L channel types. JCa is not affected by treatment of synaptosomes with the adenylate cyclase activator forskolin, the membrane permeant dibutyryl-cyclic AMP, or the kinase C activator phorbol 12-myristate 13-acetate diester, results suggesting that calcium channels in synaptosomes are not directly modulated by protein kinase A- or C-mediated phosphorylation.  相似文献   

9.
The action of phospholipase A2 and alpha-tocopherol on adenylate cyclase system functioning and on the lipid bilayer microviscosity of the rat brain synaptosome membranes was investigated. It was shown that the exposure of the synaptosomes to phospholipase A2 increases the adenylate cyclase activity stimulated by guanylyl imidotriphosphate (GITP), decreases the adenylate cyclase activity stimulated both by isoproterenol and by isoproterenol with GITP. The preincubation of synaptosomes in medium containing alpha-tocopherol does not change the character of the phospholipase action on the adenylate cyclase activity stimulated by isoproterenol but normalizes the adenylate cyclase activity stimulated both by GITP and by GITP with isoproterenol. In the last case the normalizing action of alpha-tocopherol is not caused by alteration of the microviscosity of the lipid bilayer. It appears to be due to the modification of the lipid-protein interactions of annular lipids with activated complex of catalytic subunit and guanyl nucleotide-binding protein.  相似文献   

10.
Effects of seiwhale somatotropin (STH), its biologically active fragment 77--107, porcine corticotropin (ACTH) and seiwhale prolactin on phosphodiesterase and adenylate cyclase activity of glial cells and synaptosomes isolated from the rat brain cortex were investigated. As compared with control, ACTH increased phosphodiesterase activity of glial cells by 392%, of synaptosomes by 123%, while STH by 49 and 77%, respectively, somatotropin fragment by 455 and 74%, and prolactin by 30 and 37%, respectively. Adenylate cyclase activity was significantly changed only by ACTH and only in synaptosomes (a 50% decrease). STH, its fragment and prolactin virtually failed to alter adenylate cyclase activity. The data obtained indicate that some of pituitary hormones, primarily ACTH and STH, may play the role of neuromodulators in some brain structures by decreasing the cyclic AMP level, by activating phosphodiesterase (STH and ACTH) and inhibiting adenylate cyclase (ACTH in synaptosomes).  相似文献   

11.
Cyclic adenosine monophosphate (cAMP)-mediated signal transduction was evaluated in synaptosomes prepared from rat brain cortex. Adenylate cyclase was responsive to known adenylate cyclase stimulators including peptides (CRH and VIP), catecholamines (norepinephrine and isoproterenol) and ligands that directly stimulate adenylate cyclase (forskolin). Cyclic AMP accumulation also increased approximately 2 to 3-fold, but none of the agonists was able significantly to activate cyclic AMP-dependent protein kinase (A-kinase) in cortical synaptosomes. However, in parallel studies with slices prepared from rat brain cortex, adenylate cyclase activity, cAMP accumulation and A-kinase activity were all stimulated by CRH, VIP, norepinephrine, isoproterenol and forskolin. These data suggest that, in intact synaptosomes, either the cellular machinery which facilitates binding of cAMP to the regulatory subunit of A-kinase is missing or the cAMP produced by adenylate cyclase is not accessible to A-kinase.  相似文献   

12.
Electron cytochemical studies have been made of the effect of various concentrations of the glutamic acid on localisation of adenylate and guanylate cyclases in synaptosomes from the brain cortex of rats. It was found that the glutamic acid (10(-3) M) stimulates the activity of intrasynaptosomal adenylate cyclase, but does not affect postsynaptic pool of the enzyme. The effect of glutamate on guanylate cyclase results in the increase of the frequency of the reaction both in synaptosomal and postsynaptic membranes. It is suggested that in the conduction of glutamate signal, guanylate cyclase--cGMP, but not adenylate cyclase--cAMP, system may be involved, although activation of intrasynaptosomal adenylate cyclase indicates its participation in presynaptic processes.  相似文献   

13.
The enzymes involved in cyclic nucleotide turnover (adenylate cyclase, guanylate cyclase, phosphodiesterase) were located in various regions of the brain, in synaptosomes and isolated synaptic membranes, using electron cytochemical methods. The interaction of the above enzymes in the processes of adrenergic and cholinergic cell reception in the CNS are discussed.  相似文献   

14.
Intact crude synaptosomes from bovine cerebellum contain, in addition to an externally accessible (postsynaptic) adenylate cyclase, an enzyme with its catalytic center oriented towards the inside of the synaptosome (presynaptic adenylate cyclase). This is demonstrated by the unmasking of latent adenylate cyclase activity by Triton X-100. Furthermore, intact crude synaptosomes can synthesize cyclic AMP from adenine. This synthesis takes place inside the synaptosome as the postsynaptic adenylate cyclase is inactive in the Krebs-Ringer buffer. Presynaptic adenylate cyclase activity is not influenced by depolarization, as shown by [3H]adenine pulse-labeling, but is stimulated by (?)-norepinephrine and (?)-isoproterenol. (±)-Propranolol inhibits this stimulation whereas phentolamine has no effect, suggesting the presence of a β-adrenergic receptor-coupled presynaptic adenylate cyclase.  相似文献   

15.
In the present study we demonstrated that synaptosomes isolated from rabbit brain cortex contain NO synthase and xanthine oxidase that can be activated by ultraviolet B radiation and Ca2+ accumulation to produce nitric oxide and superoxide which react together to form peroxynitrite. Irradiation of synaptosomes with ultraviolet B (up to 100 mJ/cm2), or increase the intrasynaptosomal calcium concentration using various doses (up to 100 μM) of the calcium ionophore A 23187, a gradual increase in both nitric oxide and peroxynitrite release that was inhibited by N-monomethyl-L-arginine (100 μM) was observed. The rate of nitric oxide release and cyclic GMP production by NO synthase and soluble guanylate cyclase, both located in the soluble fraction of synaptosomes (synaptosol), were increased approximately eight fold after treatment of synaptosomes with Ultraviolet B radiation (100 mJ/cm2). In reconstitution experiments, when purified NO synthase isolated from synaptosol was added to xanthine oxidase, in the presence of the appropriate cofactors and substrates, a ten fold increase in peroxynitrite production at various doses (up to 20 mJ/cm2) of UVB radiation was observed. Ultraviolet B irradiated synaptosomes promptly increased malondialdehyde production with subsequent decrease of synaptosomal plasma membrane fluidity estimated by fluorescence anisotropy of 1-4-(trimethyl-amino-phenyl)-6-phenyl-hexa-1,3,5-triene. Desferrioxamine (100 μM) tested in Ultraviolet B-irradiated synaptosomes showed a decrease (approximately 80%) in malondialdehyde production with subsequent restoration of the membrane fluidity to that of non-irradiated (control) synaptosomes. Ca2+-stimulated ATPase activity was decreased after Ultraviolet B (100 mJ/cm2) radiation of synaptosomes indicating that the subsequent increase of intrasynaptosomal calcium promoted peroxynitrite production by a calmodulin-dependent increase of NO synthase and xanthine oxidase activities. Furthermore, it was shown that UVB-irradiated synaptosomes were subjected to higher oxidative stress by exogenous peroxynitrite (100 μM) compared to non-irradiated (control) synaptosomes. In summary, the present results indicate that activation of NO synthase and xanthine oxidase of brain cells lead to the formation of peroxynitrite providing important clues in the role of peroxynitrite as a causative factor in neurotoxicity.  相似文献   

16.
Summary Adenylate cyclase (EC 4.6.1.1) activity stimulated by norepinephrine and dopamine was demonstrated histochemically by electron microscopy in the cerebral cortex and caudate nucleus of the rat. The precipitating agent in the histochemical reaction was cobalt, which was shown biochemically to increase the adenylate cyclase activity. The reaction product was located in the synapses, being contiguous attached to the postsynaptic membrane. It was also located in the plasma membrane of some nerve fibers. Alloxan, the specific inhibitor of adenylate cyclase, inhibited the reaction in the cerebral cortex and caudate nucleus, and haloperidol had a somewhat similar effect in the caudate region.Supported by grants from the Medical Research Council in the Academy of Finland  相似文献   

17.
Adenylate cyclase activity has been found in purified secretory vesicle membranes from the adrenal medulla. Activity was detected both by formation of radioactive cAMP from [alpha-32P]ATP and by the competitive protein binding assay for cAMP. Activity was highest at pH 8.0 to 8.5, and was stimulated by sodium fluoride and GppNHp, a GTP analogue known to stimulate adenylate cyclase activity in plasma membrane preparations. The reaction rate was strongly dependent on the molar ratio of Mg2+:ATP in the system. This is the first demonstration of adenylate cyclase in a secretory vesicle membrane.  相似文献   

18.
V M Vostrikov 《Tsitologiia》1985,27(2):153-156
Using an electron cytochemical method and adenylylimidodiphosphate (AMP--PNP) as substrate, the localization of adenylate cyclase activity was determined in the rat's adenohypophysis. This activity was discovered in the perinuclear space, in the canaliculi of the endoplasmic reticulum and Golgi complex, in mitochondria, on the external surface of the plasma membrane. In sinusoidal capillaries, the reaction product was localized on the plasma membrane, in perinuclear space, endoplasmic reticulum and mitochondria. The addition of isoproterenol and sodium fluoride to the incubation medium led to a rise in adenylate cyclase activity.  相似文献   

19.
By comparison of activities measured with either intact or ruptured synaptosomes it was found that half of the cerebral adenylate cyclase is presynaptic while all the membranes bound, cyclic AMP-stimulated protein kinase activity appears to be presynaptic with the cyclic AMP receptor facing inward.  相似文献   

20.
Activation of adenylate cyclase in cultured fibroblasts by trypsin   总被引:5,自引:0,他引:5  
Adenylate cyclase activity measured in membranes of cultured normal rat kidney (NRK) fibroblasts was markedly increased by prior treatment of the intact cells with trypsin. Cell population density influenced the extent of activation observed. Trypsin treatment of sparse cells significantly enhanced adenylate cyclase activity, whereas similar treatment of confluent cells caused only a slight increase in adenylate cyclase activity. The degree of activation noted after trypsin treatment also varied depending on the adenylate cyclase function measured. Activity determined in the presence of GTP alone showed the greatest increase after trypsin treatment. Similar enhancement of adenylate cyclase activity of a washed cell membrane preparation was achieved by the addition of low concentrations of trypsin directly to the adenylate cyclase reaction mixture. The membranes of confluent NRK fibroblasts initially exhibited higher adenylate cyclase activity than did membranes of sparse cells. The present results suggest that this change in adenylate cyclase activity at cell confluence is not due to an increase in the amount of adenylate cyclase in the cell membrane but rather to a change in membrane components that regulate its activity. Proteolytic activation of adenylate cyclase appears to result from degradation of cell membrane proteins that modulate the activity of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号