共查询到20条相似文献,搜索用时 0 毫秒
1.
Every unit of the rRNA gene cluster of Saccharomyces cerevisiae contains a unique site, termed the replication fork barrier (RFB), where progressing replication forks are stalled in a polar manner. In this work, we determined the positions of the nascent strands at the RFB at nucleotide resolution. Within an HpaI-HindIII fragment essential for the RFB, a major and two closely spaced minor arrest sites were found. In the majority of molecules, the stalled lagging strand was completely processed and the discontinuously synthesized nascent lagging strand was extended three bases farther than the continuously synthesized leading strand. A model explaining these findings is presented. Our analysis included for the first time the use of T4 endonuclease VII, an enzyme recognizing branched DNA molecules. This enzyme cleaved predominantly in the newly synthesized homologous arms, thereby specifically releasing the leading arm. 相似文献
2.
Olivier Fritsch Martin D. Burkhalter Sanja Kais José M. Sogo Primo Schär 《DNA Repair》2010,9(8):879-888
DNA double-strand breaks (DSB) were shown to occur at the replication fork barrier in the ribosomal DNA of Saccharomyces cerevisiae using 2D-gel electrophoresis. Their origin, nature and magnitude, however, have remained elusive. We quantified these DSBs and show that a surprising 14% of replicating ribosomal DNA molecules are broken at the replication fork barrier in replicating wild-type cells. This translates into an estimated steady-state level of 7–10 DSBs per cell during S-phase. Importantly, breaks detectable in wild-type and sgs1 mutant cells differ from each other in terms of origin and repair. Breaks in wild-type, which were previously reported as DSBs, are likely an artefactual consequence of nicks nearby the rRFB. Sgs1 deficient cells, in which replication fork stability is compromised, reveal a class of DSBs that are detectable only in the presence of functional Dnl4. Under these conditions, Dnl4 also limits the formation of extrachromosomal ribosomal DNA circles. Consistently, dnl4 cells displayed altered fork structures at the replication fork barrier, leading us to propose an as yet unrecognized role for Dnl4 in the maintenance of ribosomal DNA stability. 相似文献
3.
4.
3' untranslated regions of alfamo- and ilar-virus RNAs fold into a series of stem-loop structures to which the coat protein binds with high affinity. This binding plays a role in initiation of infection ('genome activation') and has been thought to substitute for a tRNA-like structure that is found at the 3' termini of related plant viruses. We propose the existence of an alternative conformation of the 3' ends of alfamo- and ilar-virus RNAs, including a pseudoknot. Based on (i) phylogenetic comparisons, (ii) in vivo and in vitro functional analyses of mutants in which the pseudoknot has been disrupted or restored by compensatory mutations, (iii) competition experiments between coat protein and viral replicase, and (iv) investigation of the effect of magnesium, we demonstrate that this pseudoknot is required for replication of alfalfa mosaic virus. This conformation resembles the tRNA-like structure of the related bromo- and cucumo-viruses. A low but specific interaction with yeast CCA-adding enzyme was found. The existence of two mutually exclusive conformations for the 3' termini of alfamo- and ilar-virus RNAs could enable the virus to switch from translation to replication and vice versa. The role of coat protein in this modulation and in genome activation is discussed. 相似文献
5.
6.
7.
8.
9.
The 3' ends of 5-S rRNA isolated from Escherichia coli cells were analyzed and identified after different durations of labeling with 32Pi, with and without blocking of protein synthesis. These experiments suggest that the 5-S rRNA starts as a species containing 126 nucleotides, three at each end, and that the extra nucleotides are removed from the 5' and 3' ends in parallel at comparable but different rates. Inhibition of protein synthesis with chloramphenicol blocks, in addition to the 5'-end maturation, the trimming of the extra nucleotides from the 3' end. The trimming of extra nucleotides from both ends of the 5-S rRNA is also affected by the structure of the molecular stalk of 5-S rRNA. A number of observations suggest that the trimmings from both ends are independent processes, which are carried out probably by different enzymes. 相似文献
10.
11.
The organisation and interviral homologies of genes at the 3' end of tobacco rattle virus RNA1 总被引:7,自引:3,他引:7
下载免费PDF全文

The RNA1 of tobacco rattle virus (TRV) has been cloned as cDNA and the nucleotide sequence determined of 2 kb from the 3'-terminal region. The sequence contains three long open reading frames. One of these starts 5' of the cDNA and probably corresponds to the carboxy-terminal sequence of a 170-K protein encoded on RNA1. The deduced protein sequence from this reading frame shows homology with the putative replicases of tobacco mosaic virus (TMV) and tricornaviruses. The location of the second open reading frame, which encodes a 29-K polypeptide, was shown by Northern blot analysis to coincide with a 1.6-kb subgenomic RNA. The validity of this reading frame was confirmed by showing that the cDNA extending over this region could be transcribed and translated in vitro to produce a polypeptide of the predicted size which co-migrates in electrophoresis with a translation product of authentic viral RNA. The sequence of this 29-K polypeptide showed homology with two regions in the 30-K protein of TMV. This homology includes positions in the TMV 30-K protein where mutations have been identified which affect the transport of virus between cells. The third open reading frame encodes a potential 16-K protein and was shown by Northern blot hybridisation to be contained within the region of a 0.7-kb subgenomic RNA which is found in cellular RNA of infected cells but not virus particles. The many similarities between TRV and TMV in viral morphology, gene organisation and sequence suggest that these two viral groups may share a common viral ancestor. 相似文献
12.
13.
Summary Ribosomal RNA (rRNA) genes of Saccharomyces cerevisiae are clustered in a DNA repeat unit of 5.9 megadaltons with the gene order 5S-18S-5.8S-25S rRNA (Nath and Bollon, 1977). By using two restriction endonucleases, EcoRII and HindII, which generate DNA fragments that span contiguous portions of two repeat units, we report that the rRNA gene clusters are tandemly repeated without the intervention of additional spacer DNA.The treatment of yeast DNA with the restriction endonucleases EcoRII and HindII result in the generation of 4 different DNA fragments that are of varying sizes and which hybridize with rRNA. The largest DNA fragments, 3.30 megadaltons in the case of HindII and 3.67 megadaltons in the case of EcoRII, encompass regions that code for the two opposite end regions of the 35S precuursor-rRNA. These two end regions are joined by a constant DNA segment of about 0.9 megadaltons in size of which a 0.08 megadalton segment codes for 5S rRNA. Since the 35S precursor-rRNA includes the 5.8S, 18S and 25S rRNA most of the repeat units containing the 4 rRNA coding genes in yeast are linked to each other contiguously without any intervening spacer DNA.A composite map of the DNA restriction fragments obtained by the action of the restriction endonucleases EcoRI, EcoRII, HindII and HindIII on the 5.9 megadalton repeat unit is presented. Some striking features concerning the location of the restriction sites are noted. Of the total 17 DNA restriction sites present on each repeat unit, 9 are located at or near the 3 transcribed spacer regions contained in the 5 megadalton DNA segment that codes for the 35S precursor-rRNA. The 3 transcribed spacer regions in the 35S precursor-rRNA include the two external transcribed spacer regions and an internal transcribed spacer region, the latter representing the 5.8S rRNA. 相似文献
14.
15.
Chromatin structure at the replication origins and transcription-initiation regions of the ribosomal RNA genes of Tetrahymena 总被引:29,自引:0,他引:29
The chromatin structure of regulatory regions of the extrachromosomal rRNA genes of Tetrahymena thermophila was probed by nuclease treatment of isolated nuclei. The chromatin near the origins of replication contains hypersensitive sites for micrococcal nuclease, DNAase I, and DNAase II. These sites persist in starved cells, consistent with the origins' being maintained in an altered chromatin structure independent of DNA replication. The region between the two origins of replication is organized into a phased array of seven nucleosomes, the fourth of which is centered at the axis of symmetry of the palindromic rDNA. The entire transcribed region and 150 bp upstream from the initiation site are generally accessible to nucleases; any histone proteins associated with these regions are clearly not in a highly organized nucleosomal array as seen in the central region. Comparison of the chromatin structures of the central spacer of T. thermophila and T. pyriformis rDNA reveals that deletion or insertion of DNA has occurred in increments of 200 bp. This is taken to imply that there are constraints on the evolution of spacer DNA sequences at the level of the nucleosome. 相似文献
16.
17.
The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork
下载免费PDF全文

Kobayashi T 《Molecular and cellular biology》2003,23(24):9178-9188
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats. 相似文献
18.
19.
20.