首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
A modified enzyme radiochemical assay for octopamine, based upon the N-methylation of octopamine by the enzyme phenylethanolamine N-methyl transferase (S-Adenosyl-1-methionine: phenylcthanolamine N-methyl transferase EC 2.1.28), has been developed. [3H]Methyl-S-adenosyl-l- methionine was used as methyl donor, and the reaction products separated by thin-layer chromatography prior to liquid scintillation counting. The method had a sensitivity of about 100 pg, and was suitable for the measurement of endogenous octopamine levels in mammalian brain. Although the method could be used for the determination of phenylethanolamine with similar sensitivity, concentrations of this amine in brain were too low for routine measurement. Octopamine levels in the brains of a number of mammalian species were determined using this procedure. Concentrations of the amine in mouse brain were lower in animals killed by rapid freczing than in animals killed by decapitation; a further increase in brain octopamine took place post-mortem. Brain octopamine was increased following treatment with MAO inhibitors, p-chlorophenylalanine, phenylalanine, tyrosine or phenylethylamine. The effects of tyrosine and phenylethylamine were greatly increased by pretreatment with a monoamine oxidase inhibitor. The antidepressants imipramine and iprindole gave rise to increased brain octopamine concentrations, possibly through an effect upon monoamine oxidase. Administration of chlordiazepoxide chlorpromazine, thyroxine, or reserpine had no effect upon brain octopamine.  相似文献   

2.
1. Phenethylamines were extracted from brain and liver of rats with phenylketonuria-like characteristics produced in vivo by inhibition of phenylalanine hydroxylase (EC 1.14.3.1) with p-chlorophenylalanine, with or without phenylalanine administration. To protect amines against oxidation by monoamine oxidase, pargyline was also administered. 2. beta-Phenethylamine was the major compound found in brain and liver. beta-Phenethanolamine and octopamine were also present, in lesser amounts, and the concentrations of these three amines paralleled blood phenylalanine concentrations. By comparison, tissues from control animals had only very low concentrations of these amines. 3. Small amounts of normetadrenaline, m-tyramine and 3-methoxytyramine were also found. 4. The inhibitors used, p-chlorophenylalanine and pargyline, gave rise to p-chlorophenethylamine and benzylamine respectively, the first via decarboxylation, the second probably by breakdown during extraction. 5. Distribution of phenethylamines in different brain regions and in subcellular fractions of rat brain cells was also investigated. The content of phenethylamine was highest in the striatum. 6. These findings are discussed in the light of changes occurring in human patients with uncontrolled phenylketonuria.  相似文献   

3.
The hydroxylated phenylethylamines p-tyramine, m-tyramine, octopamine, metaraminol and norepinephrine were accumulated by homogenates of rat brain much more vigorously than β-phenethylamine or amphetamine. The affinity concentrations (Km) for initial (5-min) uptake by homogenates of whole brain were 0.5, 3 and 6 μM for DL-norepine-phrine, p-tyramine and DL-octopamine, respectively. The uptake of these three hydroxylated compounds was much more vigorous in striatal tissue than in cortical tissue, and in both tissues the rate of uptake decreased in the sequence: norepinephrine > tyramine > octopamine. The uptake of these three substances was inhibited by reduced temperature, by lack of glucose, by CN- and DNP, and by desmethylimipramine, cocaine and ouabain. The uptake of norepinephrine and octopamine appeared to require Na+. Pretreatment of rats with reserpine or 6-hydroxydopamine decreased the ability of brain to take up norepinephrine or octopamine. Previously accumulated labelled phenylethylamines migrated in sucrose density gradients with a peak of radioactivity corresponding to an equilibrium position of catecholamine-containing nerve endings. The magnitude of the retention of [3H]amine in this synaptosornal peak decreased in the order: norepinephrine > octopamine > tyramine. The accumulated amines were released by sonic, osmotic and thermal stresses which disrupt neuronal membranes. The presence of a β-hydroxyl group appeared to protect amines from destruction by monoamine oxidase, presumably by virtue of uptake in presynaptic storage vesicles. During superfusion, tyramine and metaraminol appeared to displace [3H]norepinephrine from binding sites in brain slices.  相似文献   

4.
p-Octopamine and phenylethanolamine are present in the embryonic rat brain earlier than catecholamines. These phenolamines are localized mainly in the hypothalamus, where the level of p-octopamine is very high. The parallel developmental study of the activities of dopamine beta-hydroxylase, 3,4-dihydroxyphenylalanine decarboxylase, tyrosine hydroxylase, and monoamine oxidase shows that phenolamines are present in significant amounts in the hypothalamus until tyrosine hydroxylase and monoamine oxidase become catalytically active. The culture of embryonic hypothalamus at different ages shows that no tyrosine hydroxylase and monoamine oxidase activities can be detected if the tissue is cultured before 15 days. This clearly indicates that all the enzymes related to catecholamine biosynthesis are not triggered at the same time during the development of the rat brain. These results are discussed on the basis of the physiological importance of phenolamines in mammals and of the use of the developing rat brain as a model for the study of the onset of the catecholaminergic system and the decline of the octopamine.  相似文献   

5.
1. p-Octopamine injected in lateral ventricle of conscious spontaneously hypertensive rats decreased systolic blood pressure (SBP). 2. Precursors of octopamine--tyrosine, tyramine and phenylethanolamine (PEA)--had the same effect. The administration of pargyline, a MAO inhibitor, which increased brain octopamine, resulted in a reduction of systolic blood pressure; and this decrease was greater after administration of octopamine precursors and PEA. 3. Similarly, drugs known to inhibit activity of phenylethanolamine N-methyl-transferase (PNMT) and to increase brain octopamine level such as SKF 64139 and DCMB decreased SBP. 4. p-Octopamine hypotension was not antagonized by piperoxan, yohimbine and prazosin, a relatively selective antagonist of post-synaptic alpha adrenoceptors. 5. These results suggest that octopamine may be involved in central blood pressure regulation, and the receptors sensitive to octopamine appeared to be distinct from those receptive to the catecholamines.  相似文献   

6.
The effects of dietary-induced iron deficiency on fetal and maternal metabolism were studied in the rat. Concentrations of phenylalanine, but not tyrosine, were significantly elevated in plasma from iron-deficient maternal and fetal rats at day 20 of gestation with individual fetal plasma levels of phenylalanine as high as 10 mg per 100 ml. Concentrations of total 5-hydroxyindole compounds were significantly decreased in brain tissue from iron-deficient fetuses (day 20 of gestation), suggesting that synthesis of the compounds may be inhibited by iron deficiency. Mitochondrial NADH oxidase activity was markedly decreased (60%) in homogenates of fetuses at day 14 of gestation and may account for the high fetal resorption rate and small fetal size observed in the rat in iron deficiency.  相似文献   

7.
A fluorometric method for the simultaneous analyses of phenethylamine, phenylethanolamine, tyramine and octopamine has been developed. The method involves ion-exchange chromatography, derivatization with fluorescamine, solvent extraction and then separation by thin-layer chromatography. The fluorescent spots are then quantitated by scanning. The detection limits of this method are about 10 pmoles for phenethylamine, phenylethanolamine and tyramine, and 20 pmoles for octopamine. The method was used for simultaneous analyses of putative neurotransmitter amines in whole rat brain.  相似文献   

8.
Previous morphological studies reported that serotonergic neurons appear in rats in the second half of prenatal life. Initially the biochemical differentiation of these neurons before birth was studied. Both serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) was detected in the fetal brain on day 15 of gestation. During prenatal development an increase was detected in the brain levels of 5-HT (200% higher on day 19 than on day 15) and 5-HIAA (700% higher on day 19 than on day 15). Oral administration of tryptophan to pregnant rats induced a dose-related increase of tryptophan concentration in different fetal tissues, including brain. The increase in tryptophan tissue concentration was detected for low doses (50 mg/kg) and remained unsaturated after administration of high doses (1000 mg/kg). This observation suggests that the placental barrier is not effective to block the influx of high levels of tryptophan to the fetus. Tryptophan concentration in the brain is 300% higher than in the carcass and 600% higher than in the placenta. These data suggest a mechanism to assume a role in concentrating of tryptophan in the brain. Finally, it was found that an increase in brain tryptophan induced changes in both serotonin and 5-HIAA brain levels, but did not modify tyrosine, dopamine or norepinephrine levels. Thus, under physiological conditions, tryptophan hydroxylase activity in prenatal brain is probably not saturated by its substrate tryptophan.  相似文献   

9.
Normal human fetal liver contains little phenylalanine-pyruvate aminotransferase: between the 11th and 22nd week of gestation its activity (per g) is 8.8% of that in adult liver. In rat liver this enzyme begins to rise a few hours before birth. Precocious increases in the phenylalanine-pyruvate aminotransferase activity of fetal rat liver (but not kidney or brain) were evoked by premature delivery and also by the administration of thyroxine or glucagon in utero. These results, Discussed in relation to related observations on other enzymes, suggest that thyroxine secreted by the fetus, and also another factor relaesed at the beginning of labour, may be the natural stimuli for the developmental formation of phenylalanine-pyruvate aminotransferase.The regulation of hepatic phenylalanine-pyruvate aminotransferase and phenylalanine hydroxylase (L-phenylalanine, tetrahydropteridine:oxygen oxidoreductase (4-hydroxylating), EC 1.14.16.1) during fetal development is different: in both man and rat, phenylalanine hydroxylase begins to rise earlier and is unaffected by the treatments which enhanced the formation of phenylalanine-pyruvate aminotransferase. In suckling rats (but not in fetuses and adults), an injection of cortisol increased the levels of both enzymes. Hepatocarcinomas of the adult rat were devoid phenylalanine hydroxylase as well as phenylalanine-pyruvate aminotransferase. However, suppression in vivo by substrate analogues (α-methylphenylalanine and p-chlorophenylalanine) was unique for phenylalanine hydroxylase.  相似文献   

10.
Abstract— The effects of exposure to an antithyroid drug, methimazole, on brain tyrosine hydroxylase and tryptophan hydroxylase activity, as well as the levels of norepinephrine, dopamine, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid have been investigated in maturing brain. Daily treatment of neonatal rats with methimazole for 30 days induced chemical thyroidectomy as evidenced by significant impairment of body and brain growth. The activities or brain tyrosine hydroxylase and tryptophan hydroxylase and the levels of norepinephrine, dopamine and 5-hydroxytryptamine were markedly altered in a dose- and time-dependent manner in methimazole-treated rats. Conversely, the concentration of brain 5-hydroxyindoleacetic acid was elevated (46%) by methimazole administration. Treatment with the antithyroid drug failed to exert any significant effect on the endogenous levels of brain tryptophan, as well as on the activity of the deaminating enzyme, monoamine oxidase. Administration of triiodothyronine (25 or 100 μg/100 g) to hypothyroid rats for 30 days did not produce any appreciable effect upon the neurochemical parameters related to either norepinephrine or 5-hydroxytryptamine mctabolism. However, increasing the dose of triiodothyronine to 250 μg/100 g significantly elevated the levels of norepinephrine and 5-hydroxytryplamine as well as the activities of the two synthesizing enzymes, tyrosine hydroxylase and tryptophan hydroxylase. Brain 5-hydroxyindoleacetic acid levels were restored to normal values in thyroid hormone-deficient rats treated with this higher dose of triiodothyronine. Evidencc also was obtained to show that chemical thyroidectomy suppressed the spontancous locomotor activity in neonatal rats; the changes being apparent at 15 days of age. Our data support the view that thyroid hormone in neonatal life displays an important regulatory effect on the metabolism of norepinephrine, dopamine and 5-hydroxytryptamine. Since certain amines have been known to be implicated as the neurochemical substrates for behavioural arousal, it is conceivable that the observed hypoactivity in methimazolc-treated rats may, at least in part, be related to impaired maturation of norepinephrine and dopamine-synthesizing systems in brains of cretinous rats.  相似文献   

11.
Summary Histochemical studies were made in the cat's carotid body using two fluorescence techniques: the formaldehyde condensation (HCOH) method and the trihydroxyindole (THI) method. A number of pharmacologic agents known to alter catecholamine metabolism or binding were used to evaluate their effect on the amines found in the glomus cells. After treatment with reserpine, both histochemical techniques showed a reduction and eventual disappearance of fluorescence from the glomus cells. Treatment with a monoamine oxidase inhibitor (iproniazid) or with dopamine beta hydroxylase inhibitor (disulfiran) enhanced the glomus cell fluorescence. The observed increase was greater with the THI than with the HCOH technique. A few yellow fluorescent cells were found following a combination of reserpine and iproniazid treatments. A reduction in fluorescence with both techniques was obtained following DOPA decarboxylase inhibitors (MK-485). It is concluded that some of the glomus cells contain only dopamine while others contain norepinephrine or a combination of norepinephrine and dopamine. In addition the presence of DOPA in some cells following treatment with pharmacologic agents may account for some of the results. Finally, the few yellow fluorescent cells found probably contain 5-hydroxytryptamine.Supported by a grant from the Life Insurance Medical Research Fund, USPHS General Research Support Grant and USPHS Career Development Award (K3-GM-15, 457).  相似文献   

12.
The brain serotonin levels of rats maintained on a 5 % phenylalanine diet rose more slowly (0.18 μ g/g brain/hr) after administration of a monoamine oxidase inhibitor than did serotonin levels of controls (0.41 μ g/g brain/hr). The rate of brain serotonin decline following reserpine or dimethylaminobenzoyl methyl reserpate was the same for both groups as was basal monoamine oxidase activity. Brain uptake of monoamine oxidase inhibitor was also the same for both groups. It was concluded that the decrease in brain serotonin levels in phenylalanine-fed animals was due to decreased serotonin formation rather than enhanced degradation. On the basis of available data it was concluded that both hydroxylase inhibition and inhibited precursor transport were involved.  相似文献   

13.
Maternal phenylketonuria. Review with emphasis on pathogenesis   总被引:1,自引:0,他引:1  
H L Levy 《Enzyme》1987,38(1-4):312-320
Maternal phenylketonuria (PKU) refers to fetal damage from PKU in the pregnant woman. The progeny from such pregnancies are almost always microcephalic and mentally subnormal and have an increased frequency of congenital heart disease and low birth weight. Treatment with a phenylalanine-restricted diet, if begun before conception, seems to protect the fetus. The degree of protection is much less if dietary treatment is delayed until the pregnancy is in progress. The origin of fetal damage in maternal PKU is not known. Due to placental concentration of amino acids, the fetus is exposed to a higher concentration of phenylalanine than that in the mother, but it is not certain that phenylalanine is the toxic agent. Animal models made hyperphenylalaninemic by the administration of phenylalanine, often accompanied by a phenylalanine hydroxylase inhibitor, do not reproduce the full maternal PKU syndrome; but fetuses and newborns from these models have had reduced growth of the body and brain, and offspring later may show evidence of impaired learning ability.  相似文献   

14.
ENZYMATIC ISOTOPIC ASSAY FOR AND PRESENCE OF β-PHENYLETHYLAMINE IN BRAIN   总被引:8,自引:6,他引:2  
Abstract— An enzymatic isotopic assay for the measurement of β-phenylethylamine in brain, with a sensitivity of 100-200 pg, has been developed. With this assay, the endogenous β-phenylethylamine content (1.5 ng/g) in the rat brain has been determined. Phenylalanine administration increases the brain levels of this amine; inhibition of monoamine oxidase causes a 40-fold increase in brain β-phenylethylamine. After a combined treatment with a monoamine oxidase inhibitor and phenylalanine, the β-phenylethylamine content in the brain increases to about 400-fold. This increase can be blocked by the central decarboxylase inhibitor NSD-1055. p-Chlorophenylalanine also increases β-phenylethylamipe concentration in the brain, and this effect is potentiated by a simultaneous administration of phenylalanine.  相似文献   

15.
The activities of the catecholamine synthetic enzymes tyrosine hydroxylase and phenylethanolamine N-methyltransferase, and the concentrations of the catecholamines and their respective metabolites, have been measured in the dorsal and ventral halves of the brainstem at various ages in the embryonic and adult rat. The activity of phenylethanolamine N-methyltransferase in both parts of the brainstem at day 14 of gestation is at or greater than adult levels and thereafter displays relatively small variations during ontogeny. Tyrosine hydroxylase activity, in contrast, is undetectable at day 14 and increases slowly, achieving only 20-25% of adult values by day 18 of gestation. Adrenaline concentrations correlate well with the activity of phenylethanolamine N-methyltransferase, showing a precocious development, whereas noradrenaline and 3,4-dihydroxyphenylethylamine (dopamine) concentrations are more closely related to the enhancement of tyrosine hydroxylase activity; at day 18 of gestation, for example, they are only 5 and 10%, respectively, of the adult values. The concentrations of the metabolites of noradrenaline and dopamine are suggestive of a high rate of turnover. These results confirm previous immunocytochemical evidence of a tardy appearance of tyrosine hydroxylase-like immunoreactivity in the phenylethanolamine N-methyltransferase-positive perikarya of the embryonic medulla oblongata. In addition, the abundance of adrenaline in this area at early gestational stages strongly suggests that, despite the paucity of tyrosine hydroxylase, phenylethanolamine N-methyltransferase is active in vivo and is utilizing a substrate other than noradrenaline. It is likely, however, that at later stages of gestation, when tyrosine hydroxylase is present at sufficient activity to supply noradrenaline, the conventional synthetic pathway for adrenaline formation comes into being.  相似文献   

16.
Evidence has been presented that alterations in thyroidal status produce marked changes in the metabolism of several biogenic amines in developing brain. Neonatal hypothyroidism induced either by 131I or by an anti-thyroid agent, methimazole, markedly decreased the concentrations of norepinephrine, dopamine and 5-hydroxytryptamine and the activity of their rate-limiting enzymes, tyrosine hydroxylase and tryptophan hydroxylase. However, the levels of 5-hydroxyindoleacetic acid, the chief metabolite of 5-hydroxytryptamine were elevated in several regions of the brain. Whereas thyroid deficiency in early life produced no appreciable change in whole brain monoamine oxidase activity, it was increased in mid brain and decreased in the hypothalamus. Brain acetylcholine levels were significantly elevated and the activity of acetylcholinesterase remained unchanged in rats made hypothyroid at 1 day of age. Delaying thyroidectomy for 20 days after birth produced less appreciable changes in norepinephrine and 5-hydroxytryptamine metabolism. Thyroid deficiency suppressed the ontogenesis of behavioural arousal and spontaneous locomotor activity. The administration of L-triiodothyronine to hypothyroid animals in early life restored the metabolism of various neurohumors virtually to the normal limits. However, when the replacement therapy was postponed until adulthood, L-triiodothyronine failed to produce any restorative effects, suggesting that a critical period exists in early life during which thyroid hormone must be present to permit normal developmental pattern of central amines. Data also have been obtained demonstrating that neonatal hyperthyroidism induced by daily administration of L-triiodothyronine results in an increased turnover of norepinephrine and 5-hydroxytryptamine. These amine changes were accompanied by a marked rise in the spontaneous locomotor activity in hyperthyroid rats. Finally, chronic treatment with lithium, an antimanic drug, also known to suppress thyroid hormone production, significantly decreased not only the spontaneous locomotor activity, but also changes in the turnover of 5-hydroxytryptamine and norepinephrine in neonatally hyperthyroid rats.  相似文献   

17.
In contradistinction to the observation made before that iproniazid has a potentiating effect on certain amines in guinea pigs, human studies have shown that this effect has very little clinical importance, when both the amines and the amine oxidase inhibitor are given in the usual therapeutic doses. However, neither in man nor in the guinea pig pretreatment with iproniazid showed a potentiating effect on amines which are not substrates of monoamine oxidase (ephedrine and amphetamine). Patients with epilepsy and allergic disease may receive iproniazid.  相似文献   

18.
David J. Edwards 《Life sciences》1978,23(11):1201-1207
The characteristics of phenylethanolamine as both a competitive inhibitor and as a substrate for monoamine oxidase (MAO) were studied using rat brain and liver homogenates. Although phenylethanolamine, even at high concentrations (1 mM), produced minimal inhibition of MAO when serotonin (a substrate for type A MAO) was used as the substrate, it was a potent competitive inhibitor (Ki=11 μM) of the deamination of phenylethylamine (a substrate for type B MAO). When phenylethanolamine was used as a substrate, deprenyl, a selective inhibitor of type B MAO, was found to produce a single sigmoid inhibition curve at low concentrations of the inhibitor (pI50=7.5). These results indicate that phenylethanolamine is a specific substrate for type B MAO. Identification of the products formed under the assay conditions show that phenylethanolamine is converted to both mandelic acid and phenylethylene glycol by liver homogenates but only to the latter, neutral metabolite by brain homogenates.  相似文献   

19.
1. Pteridine cofactor of phenylalanine hydroxylase (EC 1.14.16.1) and dihydropteridine reductase (EC 1.6.99.7) in the phenylalanine hydroxylating system have been studied in the fetal rat liver. 2. Activities of pteridine cofactor and dihydropteridine reductase were measured as about 6 and 50%, respectively, of the levels of adult liver in the liver from fetuses on 20 days of gestation, at this stage the activity of phenylalanine hydroxylase was almost negligible in the liver. 3. Development of the activity of sepiapterin reductase (EC 1.1.1.153), an enzyme involved in the biosynthesis of pteridine cofactor, was studied in rat liver during fetal (20-22 days of gestation), neonatal and adult stages comparing with the activity of dihydrofolate reductase (EC 1.5.1.3). Activities of the enzymes were about 80 and 50%, respectively, of the adult levels at 20 days of gestation. 4. Some characteristics of sepiapterin reductase and dihydropteridine reductase of fetal liver were reported.  相似文献   

20.
The acute administration of the monoamine oxidase inhibitor iproniazid to rats causes a highly significant suppression of serum prolactin levels at 2 h. At the same time there is a significant rise in the hypothalamic-median eminence concentrations of the biogenic monoamines dopamine, noradrenaline and serotonin. When iproniazid is administered daily to rats for 4 days and the animals are examined on the fifth day brain noradrenaline and serotonin levels are elevated similarly to those seen after acute administration but dopamine concentration is near normal while serum prolactin is significantly elevated. This study thus demonstrates that a quite specific and unexpected change occurs in the regulation of hypothalamic-median eminence dopamine when iproniazid is administered chronically and provides an explanation of previous observations in human subjects where raised serum prolactin levels are observed after chronic therapy with monoamine oxidase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号