首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In both vertebrates and invertebrates, multiple effects of biogenic amines on neuromuscular transmission, muscle contraction kinetics and metabolism have been described. Nevertheless, it is not yet known whether and how these different effects work in concert during the performance of a specific behavior. In the locust flight system, the biogenic amine octopamine is released as a neurohormone into the haemolymph, and also delivered directly onto specific target muscles by individually identified dorsal unpaired median neurons. Determining the connectivity of these neurons and their activation during behavior, we show for the first time that different types of dorsal unpaired median neurons are differentially connected to certain components of the flight circuitry. During flight, all types of pterothoracic dorsal unpaired median neurons innervating flight muscles receive inhibitory inputs from tegula proprioceptive afferents and from the central flight circuitry, whereas all other types of dorsal unpaired median neurons are excited by wind-sensitive pathways and by the central pattern generator. Considering the results of other studies which investigated metabolic effects of octopamine, we propose a model in which the differential activation of dorsal unpaired median neurons during flight may lead to an adequately controlled release or removal of octopamine to adjust metabolic processes to the requirements of a specific motor program. Accepted: 24 February 1999  相似文献   

4.
5.
An early event in the formation of the serotonergic synapse by the Retzius (R) onto the pressure-sensitive (P) neurons of the leech is the elimination of an extrasynaptic response to transmitter from sites of contact on the postsynaptic cell. This event during synapse formation is cell-specific in that it is elicited in vitro by contact with the presynaptic R cell but not with other neurons. In the study reported here, we investigated the nature of this interaction between R and P neurons. The loss of the extrasynaptic response of the P cell was elicited by contact with R cells fixed in a mild paraformaldehyde solution, but not by R cells treated with the proteolytic enzyme trypsin prior to fixation. As well, a variety of lectins were assayed for their ability to interfere with synapse formation. The transmitter responses of P cells plated on lectin-coated substrates were unaffected. However, exposure of the R cell to the lectin wheat germ agglutinin (WGA), but not to other lectins, prior to pairing prevented the loss of the extrasynaptic response in contacted P cells and blocked the formation of the R? P synapse in culture. We conclude that recognition by the P cell of the R cell during synapse formation may be mediated by an R cell-specific surface protein which binds wheat germ agglutinin. 1994 John Wiley & Sons, Inc.  相似文献   

6.
The requirement for trophic factors in neurite outgrowth is well established, though their role in synapse formation is yet to be determined. Moreover, the issue of whether the trophic factors mediating neurite outgrowth are also responsible for synapse specification has not yet been resolved. To test whether trophic factors mediating neurite outgrowth and synapse formation between identified neurons are conserved in two molluscan species and whether these developmental processes are differentially regulated by different trophic factors, we used soma-soma and neurite-neurite synapses between identified Lymnaea neurons. We demonstrate here that the trophic factors present in Aplysia hemolymph, although sufficient to induce neurite outgrowth from Lymnaea neurons, do not promote specific synapse formation between excitatory partners. Specifically, the identified presynaptic neuron visceral dorsal 4 (VD4) and postsynaptic neuron left pedal dorsal 1 (LPeD1) were either paired in a soma-soma configuration or plated individually to allow neuritic contacts. Cells were cultured in either Lymnaea brain-conditioned medium (CM) or on poly-L-lysine dishes that were pretreated with Aplysia hemolymph (ApHM), but contained only Lymnaea defined medium (DM; does not promote neurite outgrowth). In ApHM-coated dishes containing DM, Lymnaea neurons exhibited extensive neurite outgrowth, but appropriate excitatory synapses failed to develop between the cells. Instead, inappropriate reciprocal inhibitory synapses formed between VD4 and LPeD1. Similar inappropriate inhibitory synapses were observed in Aplysia hemolymph-pretreated dishes that contained dialyzed Aplysia hemolymph. These inhibitory synapses were novel and inappropriate, because they do not exist in vivo. A receptor tyrosine kinase inhibitor (Lavendustin A) blocked neurite outgrowth induced by both Lymnaea CM and ApHM. However, it did not affect inappropriate inhibitory synapse formation between the neurons. These data demonstrate that neurite outgrowth but not inappropriate inhibitory synapse formation involves receptor tyrosine kinases. Together, our data provide direct evidence that trophic factors required for neurite outgrowth are conserved among two different molluscan species, and that neurite extension and synapse specification between excitatory partners are likely mediated by different trophic factors.  相似文献   

7.
The pharmacology of the direct central connections between the fast extensor and flexor motor neurones of a locust (Schistocerca gregaria) hind leg was studied. A spike in the fast extensor produces an EPSP in the flexor motor neurones. Glutamate depolarized the flexor motor neurones when injected into the neuropil. Quisqualate, but not by kainate or NMDA, also depolarized the flexor motor neurones. The fast extensor was also depolarized by glutamate, and also by kainate, but not by quisqualate, AMPA or NMDA. The glutamate response in the flexor motor neurones and the EPSP evoked by a spike in FETi both had similar reversal potentials. The FETi-evoked EPSP was blocked by bath application of the glutamate antagonist glutamic acid diethyl ester. The responses of extrasynaptic somata receptors to glutamate were compared to the neuropil responses. Glutamate usually hyperpolarized the somata of FETi and the flexor motor neurones. The response of a flexor motor neurone to glutamate was abolished at potentials less negative than -90 mV. The results provide evidence for glutamate transmission at central synapses in the locust, and show that presumed synaptic receptors in the neuropil differ to the extrasynaptic soma response  相似文献   

8.
The accessibility of embryonic and adult neurons within invertebrate nervous systems has made them excellent subjects for neurobiological study. The ability to readily identify individual neurons, together with their great capacity for regeneration, has been especially beneficial to investigations of synapse formation and the specificity of neuronal connectivity. Many invertebrate neurons survive for long periods following isolation into primary cell culture. In addition, they readily extend new neuritic arbors and form electrical and chemical connections at sites of contact. Thus, cell culture approaches have allowed neuroscientists greater access to, and resolution of, events underlying neurite outgrowth and synaptogenesis. Studies of identified neuromuscular synapses ofHelisoma have determined a number of signaling mechanisms involved in transsynaptic communication at sites of neuron-target contact. At these sites, both anterograde and retrograde signals regulate the transformation of growth cones into functional presynaptic terminals. We have found that specific muscle targets induce both global and local changes in neurotransmitter secretion and intracellular calcium handling. Here we review recent studies of culturedHelisoma synapses and discuss the mechanisms thought to govern chemical synapse formation in these identified neurons and those of other invertebrate species.  相似文献   

9.
10.
11.
12.
Effects of temperature on properties of flight neurons in the locust   总被引:1,自引:0,他引:1  
High ambient temperatures increase the wing-beat frequency in flying locusts, Locusta migratoria. We investigated parameters of circuit and cellular properties of flight motoneurons at temperatures permissive for flight (20–40 °C). As the thoracic temperature increased motoneuronal conduction velocity increased from an average of 4.40 m/s at 25 °C to 6.73 m/s at 35 °C, and the membrane time constant decreased from 11.45 ms to 7.52 ms. These property changes may increase locust wing-beat frequency by affecting the temporal summation of inputs to flight neurons in the central circuitry. Increases in thoracic temperature from 25–35 °C also resulted in a hyperpolarization of the resting membrane potentials of flight motoneurons from an average of-41.1 mV to -47.5 mV, and a decrease of input resistances from an average of 3.45 M to 2.00 M. Temperature affected the measured input resistance both by affecting membrane properties, and by altering synaptic input. We suggest that the increase in conduction velocity Q10=1.53) and the decrease of membrane time constant (Q10=0.62) would more than account for the wing-beat frequency increase (Q10=1.15). Hyperpolarization of the resting membrane potential (Q10=1.18) and reduction in input resistance (Q10=0.54) may be involved in automatic compensation of temperature effects.Abbreviations ANOVA analysis of variance - CPG central pattern generator - DL dorsal longitudinal muscles - EMG electromyographic - MN motoneuron - PSP post synaptic potential - Q10 temperature coefficient - RMP resting membrane potential - S.D. standard deviation - SR stretch receptor  相似文献   

13.
14.
15.
Monosynaptic connection between two identified neurones was investigated using electrophysiological and morphological methods in preparation of isolated nervous system of the snail Achatina fulica. Intracellular pressure injection of cobalt chloride was used for staining of neuronal branches. Electrophysiologically revealed synaptic connection between two giant neurones was identified to be monosynaptic by morphological methods.  相似文献   

16.
Summary Physiologically characterised motor neurones in the thoracic ganglia of the locust were injected with horseradish peroxidase in order that the spatial relationship between their input and output synapses could be observed with the electron microscope. A modification in the development procedure for the peroxidase ensured that the internal fine structure of the stained neurones was not obscured by the diaminobenzidine reaction product. Input and output synapses may occur within 1 m of each other on the neuropilar processes of the motor neurones. This supports physiological evidence that motor neurones may be involved in local circuit interactions within the thoracic ganglia.  相似文献   

17.
Journal of Comparative Physiology A - Intracellular recordings were made from the motor neurons which innervate the dorsal longitudinal flight muscle (DLM) inDrosophila, while a normal-appearing...  相似文献   

18.
A new technique for isolating the cell bodies of insect central neurons and for maintaining them in vitro for several hours is described. The input resistance of the isolated soma was higher than that of its in situ counterpart but it usually had a lower resting potential. Unlike the in situ soma, most isolated cell bodies generated all-or-none action potentials. The somal membrane carries extrajunctional acetylcholine receptors as a diffusely-distributed population. d-Tubocurarine and atropine blocked the response to acetylcholine, but it was enhanced by eserine.  相似文献   

19.
The locust’s optic lobe contains a system of wide-field, multimodal, centrifugal neurons. Two of these cells, the protocerebrum-medulla-neurons PM4a and b, are octopaminergic. This paper describes a second pair of large centrifugal neurons (the protocerebrum-medulla-neurons PM1a and PM1b) from the brain of Locusta migratoria based on intracellular cobalt fills, electrophysiology, and immunocytochemistry. They originate and arborise in the central brain and send processes into the medulla of the optic lobe. Double intracellular recording from the same cell suggests input in the central brain and output in the optic lobe. The neurons show immunoreactivity to gamma-amino-butyric acid and its synthesising enzyme, glutamate decarboxylase. The PM1 cells are movement sensitive and show habituation to repeated visual stimulation. Bath application of octopamine causes the response to dishabituate. A very similar effect is produced by electrical stimulation of one of an octopaminergic PM4 neuron. This effect can be blocked by application of the octopamine antagonists, mianserin and phentolamine. This readily accessible system of four wide-field neurons provides a system suitable for the investigation of octopaminergic effects on the visual system at the cellular level.  相似文献   

20.
The dorsal motor nucleus of the vagus (DMV) receives more noradrenergic terminals than any other medullary nucleus; few studies, however, have examined the effects of norepinephrine (NE) on DMV neurons. Using whole cell recordings in thin slices, we determined the effects of NE on identified gastric-projecting DMV neurons. Twenty-five percent of DMV neurons were unresponsive to NE, whereas the remaining 75% responded to NE with either an excitation (49%), an inhibition (26%), or an inhibition followed by an excitation (4%). Antrum/pylorus- and corpus-projecting neurons responded to NE with a similar percentage of excitatory (49 and 59%, respectively) and inhibitory (20% for both groups) responses. A lower percentage of excitatory (37%) and a higher percentage of inhibitory (36%) responses were, however, observed in fundus-projecting neurons. In all groups, pretreatment with prazosin or phenylephrine antagonized or mimicked the NE-induced excitation, respectively. Pretreatment with yohimbine or UK-14304 antagonized or mimicked the NE-induced inhibition, respectively. These data suggest that NE depolarization is mediated by alpha(1)-adrenoceptors, whereas NE hyperpolarization is mediated by alpha(2)-adrenoceptors. In 16 neurons depolarized by NE, amplitude of the action potential afterhyperpolarization (AHP) and its kinetics of decay (tau) were significantly reduced vs. control. No differences were found on the amplitude and tau of AHP in neurons hyperpolarized by NE. Using immunohistochemical techniques, we found that the distribution of tyrosine hydroxylase fibers within the DMV was significantly different within the mediolateral extent of DMV; however, distribution of cells responding to NE did not show a specific pattern of localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号