首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genes encoding two of the major glycoproteins of bovine herpesvirus 1 (BHV-1), gI and gIII, were cloned into the eucaryotic expression vectors pRSVcat and pSV2neo and transfected into murine LMTK- cells, and cloned cell lines were established. The relative amounts of gI or gIII expressed from the two vectors were similar. Expression of gI was cell associated and localized predominantly in the perinuclear region, but nuclear and plasma membrane staining was also observed. Expression of gI was additionally associated with cell fusion and the formation of polykaryons and giant cells. Expression of gIII was localized predominantly in the nuclear and plasma membranes. Radioimmunoprecipitation in the presence or absence of tunicamycin revealed that the recombinant glycoproteins were proteolytically processed and glycosylated and had molecular weights similar to those of the forms of gI and gIII expressed in BHV-1-infected bovine cells. However, both recombinant glycoproteins were glycosylated to a lesser extent than were the forms found in BHV-1-infected bovine cells. For gI, a deficiency in N-linked glycosylation of the amino-terminal half of the protein was identified; for gIII, a deficiency in O-linked glycosylation was implicated. The reactivity pattern of a panel of gI- and gIII-specific monoclonal antibodies, including six which recognize conformation-dependent epitopes, was found to be unaffected by the glycosylation differences and was identical for transfected or BHV-1-infected murine cells. Use of the transfected cells as targets in immune-mediated cytotoxicity assays demonstrated the functional recognition of recombinant gI and gIII by murine antibody and cytotoxic T lymphocytes. Immunization of mice with the transfected cells elicited BHV-1-specific virus-neutralizing antibody, thus verifying the antigenic authenticity of the recombinant glycoproteins and the important role of gI and gIII as targets of the immune response to BHV-1 in this murine model system.  相似文献   

2.
This study reports the identification and initial characterization of the precursors, modified forms, and oligomers of bovine herpesvirus 1 (BHV-1) gI and gE proteins with polyvalent rabbit serum specific for gI or gE. Our experiments used the Colorado strain of BHV-1 and mutant viruses with insertions of the Escherichia coli lacZ gene into the predicted gE and gI reading frames. We also translated the gE and gI open reading frames in vitro and expressed them in uninfected cells using eukaryotic expression vectors. Precursor-product relationships were established by pulse-chase analysis and endoglycosidase H and glycopeptidase F digestions. Like the homologous glycoproteins of herpes simplex virus type 1, pseudorabies virus, and varicella-zoster virus, BHV-1 gI and gE are modified by N-linked glycosylation and associate with each other soon after synthesis, forming a noncovalent complex in infected and transfected cells. An analysis of mutant and wild-type-virus-infected cells and transfected COS cells expressing gE or gI alone suggested that gE-gI complex formation is necessary for efficient processing of the gE precursor to its mature form. One new finding was that unlike the other alphaherpesvirus gI homologs, a fraction of pulse-labeled gI synthesized in BHV-1-infected cells apparently is cleaved into two relatively stable fragments 2 to 4 h after the pulse. Finally, we incubated BHV-1-infected cell extracts with nonimmune mouse, rabbit, horse, pig, and calf sera and found no evidence that gE or gI functioned as Fc receptors as reported for the herpes simplex virus type 1 and varicella-zoster virus homologs.  相似文献   

3.
X P Liang  L A Babiuk    T J Zamb 《Journal of virology》1991,65(10):5553-5557
The gIII glycoproteins of bovine herpesvirus 1 (BHV-1) and of pseudorabies virus (PRV) are structurally homologous. Both proteins also play preeminent roles in mediating virus attachment to permissive cells. To directly compare the functional relation between these glycoproteins, we constructed a recombinant BHV-1 in which the BHV-1 gIII coding sequence was replaced by the PRV gene homolog. The resultant recombinant virus efficiently expressed PRV gIII and then incorporated it into its envelope. The levels of PRV gIII expression and incorporation were equivalent to those achieved by the wild-type virus for BHV-1 gIII. The recombinant virus was fully susceptible to neutralization by anti-PRV gIII neutralizing antibody. In addition, the virus attachment and penetration functions, as well as the virus replication efficiency, which were lost by deleting the BHV-1 gIII gene, were restored by expressing the PRV gIII homolog in its place. These results demonstrated that PRV gIII and BHV-1 gIII share complementary functions.  相似文献   

4.
In the Alphaherpesvirinae subfamily, the gE and gI genes are conserved and encode membrane glycoproteins required for efficient pathogenesis (virulence). The molecular mechanism(s) responsible is not well understood, but the existence of similar phenotypes of gE and gI mutations in diverse Alphaherpesvirinae implies conservation of function(s). In this report, we describe construction of pseudorabies virus (PRV) recombinants that efficiently express the bovine herpesvirus 1 (BHV-1) membrane proteins gI and gE at the PRV gG locus. Each BHV-1 gene was cloned in a PRV mutant lacking both the PRV gI and gE coding sequences. All recombinant viruses expressed the BHV-1 proteins at levels similar to or greater than that observed after infection with parental BHV-1, and there were no observable differences in processing or ability to form gE-gI oligomers. The important observation resulting from this report is that the BHV-1 gE and gI proteins functioned together to complement the virulence defect of PRV lacking its own gE and gI genes in a rodent model, despite being derived from a highly restricted host range virus with a different pathogenic profile.  相似文献   

5.
A bovine herpesvirus 1 (BHV-1) gIII deletion mutant (gIII-) was produced by means of recombinant DNA that retained the ability to replicate in cell culture. However, the gIII- mutant was functionally defective, showing impaired attachment to permissive cells, a delay in virus replication, and reduced extracellular virus production. The attachment defect exhibited by the gIII- mutant is an indication of the role played by gIII in the normal infection process. This was shown by dramatically decreased binding of radiolabelled gIII- virus to permissive cells and a slower adsorption rate, as measured by plaque formation, than the wild-type (wt) virus. Furthermore, treatment of the gIII- virus with neomycin increased virus adsorption and plaque formation by severalfold, whereas neomycin treatment had no effect on the wt virus. This observation showed that the gIII- mutant was strictly defective in adsorption but fully competent to produce productive infections once induced to attach. The gIII- mutant showed greater sensitivities than did the wt virus to anti-gI and anti-gIV antibody-mediated neutralization. Analyses with panels of monoclonal antibodies to gI and gIV revealed that the epitopes gI-IV and gIV-III were the main targets for enhanced neutralization. This provided evidence that gI and gIV may also participate in virus attachment. Finally, when affinity-purified gI, gIII, and gIV were tested for their ability to inhibit virus adsorption, gIII had the most pronounced inhibitory effect, followed by gI and then gIV. gIII was able to completely inhibit wt virus adsorption, and at a high concentration, it also partially inhibited the gIII- mutant. gI and gIV inhibited wt and gIII- mutant adsorption to a comparable extent. Our results collectively indicate that gIII plays a predominant role in virus attachment, but gI and gIV also contribute to this process. In addition, a potential cooperative mechanism for virus attachment with these three proteins is presented.  相似文献   

6.
A cDNA clone representing the genome of structural proteins of Japanese encephalitis virus (JEV) was inserted into the thymidine kinase gene of vaccinia virus strains LC16mO and WR under the control of a strong early-late promoter for the vaccinia virus 7.5-kilodalton polypeptide. Indirect immunofluorescence and fluorescence-activated flow cytometric analysis revealed that the recombinant vaccinia viruses expressed JEV E protein on the membrane surface, as well as in the cytoplasm, of recombinant-infected cells. In addition, the E protein expressed from the JEV recombinants reacted to nine different characteristic monoclonal antibodies, some of which have hemagglutination-inhibiting and JEV-neutralizing activities. Radioimmunoprecipitation analysis demonstrated that two major proteins expressed in recombinant-infected cells were processed and glycosylated as the authentic PreM and E glycoproteins of JEV. Inoculation of rabbits with the infectious recombinant vaccinia virus resulted in rapid production of antiserum specific for the PreM and E glycoproteins of JEV. This antiserum had both hemagglutination-inhibiting and virus-neutralizing activities against JEV. Furthermore, mice vaccinated with the recombinant also produced JEV-neutralizing antibodies and were resistant to challenge with JEV.  相似文献   

7.
Temporal control of bovine herpesvirus 1 glycoprotein synthesis.   总被引:1,自引:1,他引:0       下载免费PDF全文
The gI, gIII, and gIV glycoproteins are major bovine herpesvirus 1 antigens involved in virus neutralization. Results indicate that the gI and gIV glycoproteins were expressed as beta proteins, whereas the gIII glycoprotein was expressed strictly as a gamma protein. These findings suggest that gI and gIV may be superior to gIII as vaccine candidates.  相似文献   

8.
Bovine herpesvirus 5 (BHV-5) is a neurovirulent alphaherpesvirus that causes fatal encephalitis in calves. In a rabbit model, the virus invades the central nervous system (CNS) anterogradely from the olfactory mucosa following intranasal infection. In addition to glycoproteins E and I (gE and gI, respectively), Us9 and its homologue in alphaherpesviruses are necessary for the viral anterograde spread from the presynaptic to postsynaptic neurons. The BHV-5 Us9 gene sequence was determined, and the predicted amino acid sequence of BHV-5 Us9 was compared with the corresponding Us9 sequences of BHV-1.1. Alignment results showed that they share 77% identity and 83% similarity. BHV-5 Us9 peptide-specific antibody recognized a doublet of 17- and 19-kDa protein bands in BHV-5-infected cell lysates and in purified virions. To determine the role of the BHV-5 Us9 gene in BHV-5 neuropathogenesis, a BHV-5 Us9 deletion recombinant was generated and its neurovirulence and neuroinvasive properties were compared with those of a Us9 rescue mutant of BHV-5 in a rabbit model. Following intranasal infection, the Us9 rescue mutant of BHV-5 displayed a wild-type level of neurovirulence and neural spread in the olfactory pathway, but the Us9 deletion mutant of BHV-5 was virtually avirulent and failed to invade the CNS. In the olfactory mucosa containing the olfactory receptor neurons, the Us9 deletion mutant virus replicated with an efficiency similar to that of the Us9 rescue mutant of BHV-5. However, the Us9 deletion mutant virus was not transported to the bulb. Confocal microscopy of the olfactory epithelium detected similar amounts of virus-specific antigens in the cell bodies of olfactory receptor neuron for both the viruses, but only the Us9 rescue mutant viral proteins were detected in the processes of the olfactory receptor neurons. When injected directly into the bulb, both viruses were equally neurovirulent, and they were transported retrogradely to areas connected to the bulb. Taken together, these results indicate that Us9 is essential for the anterograde spread of the virus from the olfactory mucosa to the bulb.  相似文献   

9.
Glycoproteins gp50, gII, and gIII of pseudorabies virus (PRV) were expressed either individually or in combination by vaccinia virus recombinants. In vitro analysis by immunoprecipitation and immunofluorescence demonstrated the expression of a gII protein of approximately 120 kDa that was proteolytically processed to the gIIb (67- to 74-kDa) and gIIc (58-kDa) mature protein species similar to those observed in PRV-infected cells. Additionally, the proper expression of the 90-kDa gIII and 50-kDa gp50 was observed. All three of these PRV-derived glycoproteins were detectable on the surface of vaccinia virus-PRV recombinant-infected cells. In vivo, mice were protected against a virulent PRV challenge after immunization with the PRV glycoprotein-expressing vaccinia virus recombinants. The coexpression of gII and gIII by a single vaccinia virus recombinant resulted in a significantly reduced vaccination dose required to protect mice against PRV challenge. Inoculation of piglets with the various vaccinia virus-PRV glycoprotein recombinants also resulted in protection against virulent PRV challenge as measured by weight gain. The simultaneous expression of gII and gp50 in swine resulted in a significantly enhanced level of protection as evaluated by weight evolution following challenge with live PRV.  相似文献   

10.
11.
The gene encoding bovine herpesvirus 1 (BHV-1) glycoprotein gIV was mapped, cloned, and sequenced. The gene is situated between map units 0.892 and 0.902 and encodes a predicted protein of 417 amino acids with a signal sequence cleavage site between amino acids 18 and 19. Comparison of the BHV-1 amino acid sequence with the homologous glycoproteins of other alphaherpesviruses, including herpes simplex virus type 1 glycoprotein gD, revealed significant homology in the amino-terminal half of the molecules, including six invariant cysteine residues. The identity of the open reading frame was verified by expression of the authentic recombinant BHV-1 gIV in bovine cells by using eucaryotic expression vectors pRSDneo (strong, constitutive promoter) and pMSG (weak, dexamethasone-inducible promoter). Constitutive expression of gIV proved toxic to cells, since stable cell lines could only be established when the gIV gene was placed under the control of an inducible promoter. Expression of gIV was cell associated and localized predominantly in the perinuclear region, although nuclear and plasma membrane staining was also observed. Radioimmunoprecipitation revealed that the recombinant glycoprotein was efficiently processed and had a molecular weight similar to that of the native form of gIV expressed in BHV-1-infected bovine cells. Recombinant gIV produced in the transfected bovine cells induced cell fusion, polykaryon formation, and nuclear fusion. In addition, expression of gIV interfered with BHV-1 replication in the transfected bovine cells.  相似文献   

12.
Glycoproteins homologous to glycoprotein B (gB) of herpes simplex virus constitute the most highly conserved group of herpesvirus glycoproteins. This strong conservation of amino acid sequences might be indicative of a common functional role. Indeed, gB homologs have been implicated in the processes of viral entry and virus-mediated cell-cell fusion. Recently, we showed that pseudorabies virus (PrV) lacking the essential gB-homologous glycoprotein gII could be propagated on a cell line expressing the gB homolog of bovine herpesvirus 1, gI(BHV-1), leading to a phenotypic complementation of the gII defect (I. Rauh, F. Weiland, F. Fehler, G. Keil, and T.C. Mettenleiter, J. Virol. 65:621-631, 1991). However, this pseudotypic virus could still replicate only on complementing cell lines, thereby limiting experimental approaches to analyze the effects of the gB exchange in detail. We describe here the construction and isolation of a PrV recombinant, 9112C2, that lacks gII(PrV) but instead stably carries and expresses the gene encoding gI(BHV-1). The recombinant is able to replicate on noncomplementing cells with growth kinetics and final titers similar to those of its gII-positive wild-type PrV parent. Neutralization tests and immunoprecipitation analyses demonstrated incorporation of gI(BHV-1) into 9112C2 virions with concomitant absence of gII(PrV). Analysis of in vitro host ranges of wild-type PrV, BHV-1, and recombinant 9112C2 showed that in cells of pig, rabbit, canine, monkey, or human origin, the plating efficiency of 9112C2 was similar to that of its PrV parent. Exchange of gII(PrV) for gI(BHV-1) in recombinant 9112C2 or by phenotypic complementation of gII- PrV propagated on gI(BHV-1)-expressing cell lines resulted in penetration kinetics intermediate between those of wild-type PrV and BHV-1. In conclusion, we report the first isolation of a viral recombinant in which a lethal glycoprotein mutation has been rescued by a homologous glycoprotein of a different herpesvirus. Our data show that in gII- PrV, gI(BHV-1) in vitro fully complements the lethal defect associated with lack of gII(PrV). These results conclusively demonstrate that gI(BHV-1) in a PrV background can execute all essential functions normally provided by gII(PrV). They also indicate that the origin of gB-homologous glycoproteins influences the penetration kinetics of herpesviruses.  相似文献   

13.
The role of the nonessential glycoproteins gI, gp63, and gIII in the release of pseudorabies virus from different cell lines was investigated. We show that these glycoproteins may have a beneficial or deleterious effect on virus release depending on the type of cell in which the virus is grown. Inactivation of the genes encoding either gI, gp63, or gIII has no detectable effect on virus release from rabbit kidney cells. Inactivation of gI or gp63 strongly promotes virus release from chicken embryo fibroblasts, whereas inactivation of gIII reduces virus release from these cells. A defect in both gI and gIII or in both gp63 and gIII diminishes virus release from rabbit kidney cells but improves release from chicken embryo fibroblasts. We demonstrate that all three nonessential glycoproteins contribute to one specific aspect of viral growth, namely, virus release, and that they affect virus release in conjunction with each other. Furthermore, our results show that the manifestation of the role of each of these viral functions in virus growth may differ in different cell types, i.e., that release is affected by these viral functions in conjunction with some unknown cellular function.  相似文献   

14.
Bovine monoclonal anti-Id mimicking a neutralizing epitope of bovine herpesvirus-1 (BHV-1) glycoprotein gI were developed. An epitope present on the 74K subunit of gI identified by a murine mAb 1E11 was selected for this study. Bovine lymphocytes from the prefemoral lymph node of a heifer immunized with mAb 1E11 were fused with SP-2/0, a nonsecreting murine cell-line. Two bovine x murine hybridomas secreting bovine monoclonal anti-Id specific for the Id of 1E11 were stabilized. These anti-Id inhibited the binding of 1E11 to purified glycoprotein gI in a dose-dependent fashion. Naive mice immunized with the anti-Id produced anti-anti-Id (Ab3) that reacted with BHV-1 glycoprotein gI in a RIA, and neutralized BHV-1 infection in vitro. The Ab3 also showed reactivity to the 74K subunit of authentic gI glycoprotein in a Western blot analysis, and to the synthetic peptide bearing the 1E11 epitope in a RIA. These results substantiate the presence of the population of anti-Ab2 that functionally resemble antibodies specific for the immunizing Ag BHV-1 in Ab3, and demonstrate the ability of these anti-Id to elicit BHV-1-specific antibody response.  相似文献   

15.
We have constructed a recombinant baculovirus expressing the herpes simplex virus type 1 (HSV-1) glycoprotein I (gI). Sf9 cells infected with this recombinant virus synthesized gI-related polypeptides with apparent molecular sizes of 52 and 56 kDa. The recombinant gI appeared to be glycosylated, since it was susceptible to both tunicamycin and endoglycosidase H, and the expressed gI was transported to the surface of infected cells as judged by indirect immunofluorescence. Antibodies to the recombinant gI raised in mice neutralized HSV-1 infectivity. Finally, we show here for the first time that vaccination with gI can protect mice against HSV-1 challenge.  相似文献   

16.
Ten glycoproteins of molecular weights of 180,000, 150,000, 130,000, 115,000, 97,000, 77,000, 74,000, 64,000, 55,000, and 45,000 (designated as 180K, 150K, etc.) and a single nonglycosylated 107,000-molecular-weight (107K) protein were quantitatively removed from purified bovine herpesvirus 1 (BHV-1) virions by detergent treatment. Immunoprecipitations with monospecific and monoclonal antibodies showed that three sets of coprecipitating glycoproteins, 180K/97K, 150K/77K, and 130K/74K/55K, were the major components of the BHV-1 envelope. These glycoproteins were present in the envelope of the virion and on the surface of BHV-1-infected cells and reacted with neutralizing monoclonal and monospecific antibodies. Antibodies to 150K/77K protein had the largest proportion of virus-neutralizing antibodies, followed by antibodies to 180K/97K protein. Monoclonal antibodies to 130K/74K/55K protein were neutralizing but only in the presence of complement; however, monospecific antisera produced with 55K protein did not have neutralizing activity. Analysis under nonreducing conditions showed that the 74K and 55K proteins interact through disulfide bonds to form the 130K molecule. Partial proteolysis studies showed that the 180K protein was a dimeric form of the 97K protein and that the 150K protein was a dimer of the 77K protein, but these dimers were not linked by disulfide bonds. The 107K protein was not glycosylated and induced antibodies that did not neutralize BHV-1. The 64K protein was not precipitated by anti-BHV-1 convalescent antisera, and monospecific antisera to this protein precipitated several polypeptides from uninfected cell lysates, suggesting that 64K is a protein of cellular origin associated with the BHV-1 virion envelope.  相似文献   

17.
The murine retrovirus shuttle vector pZipNeo SV(X)1 was used to construct plasmids encoding the three major surface glycoproteins of bovine herpesvirus-1 (BHV-1). Each plasmid was transfected into D17, a canine osteosarcoma cell line sensitive to lysis by bovine NK-like cells when infected with BHV-1. After selection in G418 sulfate, cell lines expressing the recombinant gene products were sorted by flow microfluorimetry, radioimmunoprecipitated, and analyzed by SDS-PAGE for fidelity as compared to the native viral glycoproteins. Two of the three genetically engineered cell lines (gI and gIV) could successfully serve as targets to detect bovine NK-like cytolysis. These findings support and extend a previous study from our laboratory indicating a role for BHV-1 glycoproteins in the cytolytic response by bovine NK-like cells. Additionally, this study demonstrated that individual proteins are recognized by these effector cells, and that recombinant glycoproteins can direct cytolytic activity in the absence of host cell infection-associated proteins. This is the first known report of Ag directed cytotoxicity by bovine null (non-B, non-T) cells.  相似文献   

18.
Evidence was recently presented that herpes simplex virus type 1 (HSV-1) immunoglobulin G (IgG) Fc receptors are composed of a complex containing a previously described glycoprotein, gE, and a novel virus-induced polypeptide, provisionally named g70 (D. C. Johnson and V. Feenstra, J. Virol. 61:2208-2216, 1987). Using a monoclonal antibody designated 3104, which recognizes g70, in conjunction with antipeptide sera and virus mutants unable to express g70 or gE, we have mapped the gene encoding g70 to the US7 open reading frame of HSV-1 adjacent to the gE gene. Therefore, g70 appears to be identical to a recently described polypeptide which was named gI (R. Longnecker, S. Chatterjee, R. J. Whitley, and B. Roizman, Proc. Natl. Acad. Sci. USA 84:147-151, 1987). Under mildly denaturing conditions, monoclonal antibody 3104 precipitated both gI and gE from extracts of HSV-1-infected cells. In addition, rabbit IgG precipitated the gE-gI complex from extracts of cells transfected with a fragment of HSV-1 DNA containing the gI, gE, and US9 genes. Cells infected with mutant viruses which were unable to express gE or gI did not bind radiolabeled IgG; however, cells coinfected with two viruses, one unable to express gE and the other unable to express gI, bound levels of IgG approaching those observed with wild-type viruses. These results further support the hypothesis that gE and gI form a complex which binds IgG by the Fc domain and that neither polypeptide alone can bind IgG.  相似文献   

19.
The membrane glycoproteins gE and gI are encoded by pseudorabies virus (PRV), a neurotropic, broad-host-range alphaherpesvirus of swine. PRV gE and gI are required for anterograde spread to a restricted set of retinorecipient neurons in the brain after infection of the rat retina. A related alphaherpesvirus, encoding gE and gI homologs, is called bovine herpesvirus 1.1 (BHV-1.1). BHV-1.1 is a respiratory pathogen of highly restricted host range and, in contrast to PRV, is unable to propagate in or cause disease in rodents. We have shown previously that the BHV-1.1 gE and gI proteins are capable of complementing the virulence functions of PRV gE and gI in a rodent model (A. C. Knapp and L. W. Enquist, J. Virol. 71:2731-2739, 1997). We examined the ability of the BHV-1.1 gE and gI homologs to direct circuit-specific invasion of the rat central nervous system by PRV. Both complete open reading frames were cloned into a PRV mutant lacking the PRV gE and gI genes. Recombinant viruses were analyzed for the ability to invade the rat brain after infection of the retina. Surprisingly, in a portion of the animals tested, the BHV-1.1 gE and gI proteins functioned autonomously to promote spread of PRV to a subset of retinorecipient regions of the brain. First, the presence of BHV-1.1 gI alone, but not PRV gI alone, promoted viral invasion of the optic tectum. Second, expression of BHV-1.1 gE alone facilitated PRV infection of a subset of neurons in the hippocampus not normally infected by PRV. When both BHV-1.1 proteins were expressed in a coinfection, all retinorecipient regions of the rat brain were infected. Therefore, depending on the viral source, homologs of gE and gI differentially affect spread between synaptically connected neurons in the rat.  相似文献   

20.
Previous studies have suggested that the attachment of bovine herpesvirus 1 (BHV-1) to permissive cells is mediated by its major glycoproteins B (gB), C (gC), and D (gD). In order to gain further insight into the mechanism of the BHV-1 attachment process, we purified authentic gB, gC, and gD from BHV-1-infected cells and membrane anchor-truncated, soluble gB, gC, and gD from stably transfected cell lines by affinity chromatography and examined their cell-binding properties on Madin-Darby bovine kidney cells. All of the glycoproteins tested exhibited saturable binding to Madin-Darby bovine kidney cells. All of the glycoproteins tested exhibited saturable binding to Madin-Darby bovine kidney cells. Addition of exogenous heparin or treatment of cells with heparinase to remove cellular heparan sulfate (HS) prevented both gC and gB from binding to cells but had no effect on gD binding. An assessment of competition between gB, gC, and gD for cell binding revealed that gC was able to inhibit gB binding, whereas other combinations showed no effect. Cell-bound gC could be dissociated by heparin or heparinase treatment. The response of bound gB to heparin and heparinase treatments differed for the authentic and soluble forms; while soluble gB was susceptible to the treatment, a significant portion of cell-bound authentic gB was resistant to the treatment. Binding affinity analysis showed that soluble gB and both forms of gC and gD each had single binding kinetics with comparable dissociation constants (Kds), ranging from 1.5 x 10(-7) to 5.1 x 10(-7) M, whereas authentic gB exhibited dual binding kinetics with Kd1 = 5.2 x 10(-7) M and Kd2 = 4.1 x 10(-9) M. These results demonstrate that BHV-1 gC binds only to cellular HS, gD binds to a non-HS component, and gB initially binds to HS and then binds with high affinity to a non-HS receptor. Furthermore, we found that while authentic gB was able to inhibit viral plaque formation, soluble gB, which retains the HS-binding property but lacks the high-affinity binding property, was defective in this respect. These results suggest that the interaction between gB and its high-affinity receptor may play a critical role in the virus entry process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号