首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Tumor necrosis factor (TNF)-alpha is a potent inflammatory cytokine implicated in the exacerbation of asthma. Chronic exposure to TNF-alpha has been reported to induce G protein-coupled receptor desensitization, but adenylyl cyclase sensitization, in airway smooth muscle cells by an unknown mechanism. Cyclic AMP, which is synthesized by adenylyl cyclases in response to G protein-coupled receptor signals, is an important second messenger involved in the regulation of the airway muscle proliferation, migration, and tone. In other cell types, TNF-alpha receptors transactivate the EGF receptor, which activates raf-1 kinase. Further studies in transfected cells show that raf-1 kinase can phosphorylate and activate some isoforms of adenylyl cyclase. Cultured human airway smooth muscle cells were treated with TNF-alpha in the presence or absence of inhibitors of prostaglandin signaling, protein kinases, or G(i) proteins. TNF-alpha caused a significant dose- (1-10 ng/ml) and time-dependent (24 and 48 h) increase in forskolin-stimulated adenylyl cyclase activity, which was abrogated by pretreatment with GW5074 (a raf-1 kinase inhibitor), was partially inhibited by an EGF receptor inhibitor, but was unaffected by pertussis toxin. TNF-alpha also increased phosphorylation of Ser(338) on raf-1 kinase, indicative of activation. IL-1beta and EGF sensitization of adenylyl cyclase activity was also sensitive to raf-1 kinase inhibition by GW5074. Taken together, these studies link two signaling pathways not previously characterized in human airway smooth muscle cells: TNF-alpha transactivation of the EGF receptor, with subsequent raf-1 kinase-mediated activation of adenylyl cyclase.  相似文献   

6.
7.
8.
9.
A combination of the pro-inflammatory cytokines interleukin (IL)-1alpha, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha induces nitric oxide synthase mRNA expression and nitric oxide (NO) generation in the human colon carcinoma cell line HT-29. This can be inhibited by pretreatment with IL-13 via a phosphatidylinositol (PI) 3-kinase-dependent mechanism (Wright, K., Ward, S. G., Kolios, G., and Westwick, J. (1997) J. Biol. Chem. 272, 12626-12633). Since NO has been implicated in regulating mechanisms leading to cell death, while activation of PI 3-kinase-dependent signaling cascades are thought to be involved with promoting cell survival events, we have investigated the outcome of these cytokine treatments on apoptosis and cell survival of HT-29 cells. Initiation of apoptosis can be achieved by the combinations of IFN-gamma/TNF-alpha, IFN-gamma/CD95, IL-1alpha/IFN-gamma, and IL-1alpha/IFN-gamma/TNF-alpha to varying extents. Induction of apoptotic markers by HT-29 cells in response to cytokine treatment is not dependent on NO production. Pretreatment with IL-13 protects against IL-1alpha/IFN-gamma/TNF-alpha- and IFN-gamma/TNF-alpha- as well as IFN-gamma/CD95-induced (but not IL-1alpha/IFN-gamma-induced) cell death. In addition, IFN-gamma/TNF-alpha and IL-1alpha/IFN-gamma/TNF-alpha stimulate activation of caspase-8 and caspase-3, which IL-13 pretreatment was able to partially inhibit and delay. IL-13 also stimulates activation of the major PI 3-kinase effector, protein kinase B. The PI 3-kinase inhibitors wortmannin and LY294002 inhibit IL-13 stimulation of protein kinase B as well as the cell survival effects of IL-13. These data demonstrate that cytokine-induced apoptosis of HT-29 cells is NO-independent and that the activation of a PI 3-kinase-dependent signaling cascade by IL-13 is a key signal responsible for the inhibition of apoptosis.  相似文献   

10.
11.
The glycosylphosphatidylinositol (GPI) anchors of Plasmodium falciparum have been proposed to be the major factors that contribute to malaria pathogenesis by eliciting the production of proinflammatory cytokines and nitric oxide by the host innate immune system. In this study we demonstrate that the parasite GPIs can effectively induce the production of TNF-alpha at 5-20 nm concentrations in interferon-gamma-primed monocytes and macrophages. The potency of the parasite GPIs activity is physiologically relevant to their ability to contribute to severe malaria pathogenesis. More importantly, we investigated the requirement of the extracellular signal-regulated kinase (ERK)-, c-Jun N-terminal kinase (JNK)-, p38-, and NF-kappaB-signaling pathways that are activated in response to P. falciparum GPIs through toll-like receptor-mediated recognition (Krishnegowda, G., Hajjar, A. M., Zhu J. Z., Douglass, E. J., Uematsu, S., Akira, S., Wood, A. S., and Gowda, D. C. (2005) J. Biol. Chem. 280, 8606-8616) for the proinflammatory responses by macrophages. The data conclusively show that the production of TNF-alpha, interleukin (IL)-12, IL-6, and nitric oxide by macrophages stimulated with parasite GPIs is critically dependent on the NF-kappaB and JNK pathways. NF-kappaB1 is essential for IL-6 and IL-12 production but not for TNF-alpha and nitric oxide, whereas NF-kappaB/c-Rel appears to be important for all four proinflammatory mediators. JNK1 and JNK2 are functionally redundant for the expression of TNF-alpha, IL-6, and nitric oxide, whereas JNK2 but not JNK1 is essential for IL-12 production. The ERK signaling pathway is not involved in TNF-alpha and nitric oxide production, but, interestingly, negatively regulates the expression of IL-6 and IL-12. Furthermore, p38 is critical for the production of IL-6 and IL-12 but is only marginally required for the production of TNF-alpha and nitric oxide. Thus, our data define the differential requirement of the downstream signaling molecules for the production of key proinflammatory cytokines and nitric oxide by macrophages in response to P. falciparum GPI stimuli. The data have important implications for the development of therapeutics for malaria treatment.  相似文献   

12.
Polymorphonuclear leukocytes (neutrophils) respond to lipopolysaccharide (LPS) through the up-regulation of several pro-inflammatory mediators. We have recently shown that LPS-stimulated neutrophils express monocyte chemoattractant protein 1 (MCP-1), an AP-1-dependent gene, suggesting that LPS activates the c-Jun N-terminal kinase (JNK) pathway in neutrophils. Previously, we have shown the activation of p38 MAPK, but not JNK, in suspended neutrophils stimulated with LPS but have recently shown activation of JNK by TNF-alpha in an adherent neutrophil system. We show here that exposure to LPS activates JNK in non-suspended neutrophils and that LPS-induced MCP-1 expression, but not tumor necrosis factor-alpha (TNF-alpha) or interleukin-8 (IL-8), is dependent on JNK activation. In addition, LPS stimulation of non-suspended neutrophils activates Syk and phosphatidylinositol 3-kinase (PI3K). Inhibition of Syk with piceatannol or PI3K with wortmannin inhibited LPS-induced JNK activation and decreased MCP-1 expression after exposure to LPS, suggesting that both Syk and PI3K reside in a signaling pathway leading to LPS-induced JNK activation in neutrophils. This Syk- and PI3K-dependent pathway leading to JNK activation after LPS exposure in non-suspended neutrophils is specific for JNK, because inhibition of neither Syk nor PI3K decreased p38 activation after LPS stimulation. Furthermore we show that PI3K inhibition decreased LPS-induced Syk activation suggesting that PI3K resides upstream of Syk in this pathway. Finally, we show that Syk associates with Toll-like receptor 4 (TLR4) upon LPS stimulation further implicating Syk in the LPS-induced signaling pathway in neutrophils. Overall our data suggests that LPS induces JNK activation only in non-suspended neutrophils, which proceeds through Syk- and PI3K-dependent pathways, and that JNK activation is important for LPS-induced MCP-1 expression but not for TNF-alpha or IL-8 expression.  相似文献   

13.
Inducible nitric oxide synthase (iNOS) has been shown to be frequently expressed in melanomas; up-regulation of this enzyme is though to be associated with tumor progression. In this study, we investigated whether diverse cytokines such as: IL-6, TNF-alpha, IL-1beta, IFN-gamma and IL6RIL6 (a highly active fusion protein of the soluble form of the IL-6R (sIL-6R) and IL-6) enhance the iNOS gene expression in B16/F10.9 murine metastatic melanoma cells. An increase at iNOS expression and NO production was observed with the co-treatment of IL6RIL6 plus TNF-alpha. Gel shift and reporter gene analyses revealed that IL6RIL6 selectively activated AP-1; while TNF-alpha increased the activities of both NF-kappaB and AP-1. Persistent activation of AP-1 was also seen in cells treated with IL6RIL6 plus TNF-alpha. Stimulation of cells with IL6RIL6/TNF-alpha resulted in the activation of mitogen-activated protein kinases (MAPK) such as c-Jun N-terminal kinase (JNK) and p38, and the abrogation by pretreatment with JNK or p38 MAPK inhibitor. IL6RIL6 or IL6RIL6/TNFalpha-inducible AP-1 binding increase was supershifted by anti-c-Jun or c-Fos antibodies, and the activation of c-Jun and c-Fos was dependent on JNK and p38, respectively. These results suggest that IL-6/sIL-6R/gp130 complex signaling has an unexpected positive effect on iNOS gene expression through JNK/p38 MAPK mediated-AP-1 activation in melanoma cells.  相似文献   

14.
Phospholipase D1 plays a key role in TNF-alpha signaling   总被引:1,自引:0,他引:1  
The primary characteristic features of any inflammatory or infectious lesions are immune cell infiltration, cellular proliferation, and the generation of proinflammatory mediators. TNF-alpha is a potent proinflammatory and immuno-regulatory cytokine. Decades of research have been focused on the physiological/pathophysiological events triggered by TNF-alpha. However, the signaling network initiated by TNF-alpha in human leukocytes is still poorly understood. In this study, we report that TNF-alpha activates phospholipase D1 (PLD1), in a dose-dependent manner, and PLD1 is required for the activation of sphingosine kinase and cytosolic calcium signals. PLD1 is also required for NFkappaB and ERK1/2 activation in human monocytic cells. Using antisense oligonucleotides to reduce specifically the expression of PLD isozymes showed PLD1, but not PLD2, to be coupled to TNF-alpha signaling and that PLD1 is required to mediate receptor activation of sphingosine kinase and calcium transients. In addition, the coupling of TNF-alpha to activation of the phosphorylation of ERK1/2 and the activation of NFkappaB were inhibited by pretreating cells with antisense to PLD1, but not to PLD2; thus, demonstrating a specific requirement for PLD1. Furthermore, use of antisense oligonucleotides to reduce expression of PLD1 or PLD2 demonstrated that PLD1 is required for TNF-alpha-induced production of several important cytokines, such as IL-1beta, IL-5, IL-6, and IL-13, in human monocytes. These studies demonstrate the critical role of PLD1 in the intracellular signaling cascades initiated by TNF-alpha and its functional role for coordinating the signals to inflammatory responses.  相似文献   

15.
16.
We investigated the cytokine-inducing activities of guluronate (G3-G6) and mannuronate (M3-M6) oligomers on RAW264.7 cells with the Bio-Plex assay system. Relatively high levels of tumor necrosis factor-alpha (TNF-alpha), granulocyte colony-stimulating factor (G-CSF), monocyte chemoattractant protein-1 (MCP-1), regulated upon activation normal T cell expressed and secreted (RANTES), granulocyte macrophage (GM)-CSF, and eotaxin were induced by alginate oligomers to different extents depending on the oligomer structures, and low but significant levels of interleukin (IL)-1alpha, IL-1beta, IL-6, IL-9, and IL-13 were also induced. Throughout all cytokines tested, M-oligomers tended to be more potent than G-oligomers in terms of cytokine induction, and this tendency was evident in differences between G3 and M3.  相似文献   

17.
Yan X  Xiu F  An H  Wang X  Wang J  Cao X 《Life sciences》2007,80(4):307-313
Fever improves survival and shortens disease duration in microbial infections. However, the mechanisms of these beneficial responses still remain elusive. Toll-like receptors (TLRs) play important roles in sensing microbes invading and therefore we hypothesized that fever range temperature may enhance responsiveness of dendritic cells (DCs) to lipopolysaccharide (LPS) by promoting TLR4 expression and signaling. In this study, we found that pretreatment of DCs with 39.5 degrees C temperature can up-regulate TLR4 expression in DCs and enhances LPS-induced DC production of interleukins (IL) IL-6, IL-10 and IL-12 but not tumor necrosis factor alpha (TNF-alpha). Blockade of the autocrine action of IL-10 could increase LPS-induced TNF-alpha and IL-12 production in DCs. Further experiments confirmed that TLR4 ligation activates extracellular signal-regulated kinase (ERK), p38, and nuclear factor-kappaB pathways more potently in DCs pretreated with 39.5 degrees C. We conclude that fever range temperature can promote TLR4 expression and signaling in DCs, leading to enhancement of immune responses to inflammatory stimuli. These results might reveal a possible mechanistic explanation for the significance of fever in activating innate immune responses.  相似文献   

18.
Tumor necrosis factor-alpha (TNF-alpha) is a multifunctional cytokine that mediates inflammation and induces bone loss caused by excessive bone resorption by osteoclasts. The interaction of TNF-alpha with its receptor activates several signal transduction pathways, including those of mitogen-activated protein (MAP) kinases (p38, JNK, and ERK) and NF-kappaB. Signaling from these molecules has been shown to play an important role in osteoclastogenesis. In the present study, we investigated the mechanism of TNF-alpha-induced osteoclast differentiation in human peripheral blood mononuclear cells (PBMCs). We found that TNF-alpha alone greatly induced differentiation of PBMCs into osteoclasts. The osteoclast differentiation induced by TNF-alpha was independent of RANKL binding to its receptor RANK on PBMCs. Furthermore, TNF-alpha potently activated p38 MAPK, JNK, and NF-kappaB. Western blotting analysis revealed that p21(WAF1/Cip1), a cyclin-dependent kinase (CDK) inhibitor, is significantly induced upon TNF-alpha stimulation. The induction of p21(WAF1/Cip1) during differentiation is responsible for arrest at G(0)/G(1) phase and associated with the JNK pathway. These results suggest that TNF-alpha regulates osteoclast differentiation through p21(WAF1/Cip1) expression and further shows that these events require JNK activity.  相似文献   

19.
IL-1 and TNF-alpha are induced in macrophages by LPS; however, it is unclear whether similar mechanisms control the expression of both genes. Here, we report on the detection of differential regulation of LPS induced IL-1 and TNF-alpha mRNA expression and protein production in murine macrophages based on the use of inhibitors of second messenger pathways. Northern blot analysis was performed with total RNA obtained from murine (C57Bl/6) peritoneal macrophages stimulated in vitro with LPS with or without an inhibitor of protein kinase C (PKc)(1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride; H7) or an inhibitor of calmodulin (CaM)-dependent kinase (N-(6-amino-hexyl)-5-chloro-1-naphthalene-sulfonamide hydrochloride; W7). Northerns were analyzed with probes for IL-1 alpha and IL-1 beta and TNF-alpha. The expression of the three cytokine mRNA by LPS was inhibited in a dose response manner by H7. In contrast, the expression of IL-1 mRNA, but not TNF-alpha mRNA, was blocked by treatment with W7. Parallel studies monitoring biologic activities of these two cytokines confirm the mRNA data. PKc inhibitors, H7 and retinal, block both IL-1 and TNF-alpha protein production and inhibitors of CaM kinase, W7, N-(6-aminobutyl)-5-chloro-2-naphthalenesulfonamide, calmidazolum, and trifluoperazine dichloride inhibit only IL-1 production. These data suggest that both PKc and CaM kinase dependent pathways are involved in the induction of IL-1 mRNA by LPS. In contrast, TNF-alpha expression appears to be PKc dependent but not CaM kinase dependent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号