首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the formation of polar and water-soluble metabolites during degradation. Hexane-extractable metabolites identified by gas chromatography-mass spectrometry included 1,1,-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol (dicofol), 2,2-dichloro-1,1-bis(4-chlorophenyl)ethanol (FW-152), and 4,4'-dichlorobenzophenone (DBP). DDD was the first metabolite observed; it appeared after 3 days of incubation and disappeared from culture upon continued incubation. This, as well as the fact that [14C]dicofol was mineralized, demonstrates that intermediates formed during DDT degradation are also metabolized. These results demonstrate that the pathway for DDT degradation in P. chrysosporium is clearly different from the major pathway proposed for microbial or environmental degradation of DDT. Like P. chrysosporium ME-446 and BKM-F-1767, the white rot fungi Pleurotus ostreatus, Phellinus weirii, and Polyporus versicolor also mineralized DDT.  相似文献   

2.
Previous studies demonstrated that Alcaligenes eutrophus A5 transforms 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) to 4-chlorobenzoate via a meta-ring fission product. The initial reactions could be catalyzed by either monooxygenase or dioxygenase enzymes. In the present study, a transient intermediate that accumulated during the transformation of DDT by the biphenyl-grown cells was identified as 1,1,1-trichloro-2-(4-chlorophenyl-2,3-dihydro-4,6-cyclohexadiene)-2-(4′-chlorophenyl)ethane (DDT-2,3-dihydrodiol) on the basis of mass spectral analysis after n-butylboronic acid derivatization. The dihydrodiol undergoes a characteristic acid-catalyzed dehydration to produce phenols. 1H-NMR indicated a cis-relative stereochemistry. The results indicate that the biphenyl dioxygenase from A. eutrophus A5 catalyzes the dihydroxylation of DDT at the unsubstituted carbons on the aromatic ring to produce DDT-2,3-dihydrodiol. Received: 22 July 1998 / Accepted: 6 October 1998  相似文献   

3.
In this work we have investigated the ability of the biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAELB400) and of Pandoraea pnomenusa B356 (BphAEB356) to metabolize DDT. Data show BphAELB400 is unable to metabolize this substrate but BphAEB356 metabolizes DDT to produce two stereoisomers. Structural analysis of DDT-docked BphAELB400 and BphAEB356 identified residue Phe336 of BphAELB400 as critical to prevent productive binding of DDT to BphAELB400. Furthermore, the fact that residue Gly319 of BphAEB356 is less constrained than Gly321 of BphAELB400 most likely contributes to the ability of BphAEB356 to bind DDT productively. This was confirmed by examining the ability of BphAE chimeras obtained by shuffling bphA genes from strain B356 and LB400. Chimeras where residues Thr335 (which modulates the constraints on Gly321) and Phe336 (which contacts the substrate) of BphAELB400 were replaced by Gly and Ile respectively were able to metabolize DDT. However their stereospecificities varied depending on the presence of other segments or residues from BphAEB356. Structural analysis suggests that either one or both of residue 267 and a segments comprised of residue 247–260 are likely involved in stereospecificity.  相似文献   

4.
Biotransformation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by Alcaligenes eutrophus A5 was demonstrated by analysis of ethyl acetate-extracted products from resting cell cultures. Gas chromatography-mass spectrometry characterization of the neutral extracts revealed two hydroxy-DDT intermediates (m/z = 370) with retention times at 19.55 and 19.80 min that shared identical mass spectra. This result suggested that the hydroxylations occurred at the ortho and meta positions on the aromatic ring. UV-visible spectrum spectrophotometric analysis of a yellow metabolite in the culture supernatant showed a maximum A402 with, under acidic and basic conditions, spectrophotometric characteristics similar to those of the aromatic ring meta-cleavage products. 4-Chlorobenzoic acid was detected by thin-layer chromatography radiochemical scanning in samples from mineralization experiments by comparison of Rf values of [14C]DDT intermediates with that of an authentic standard. These results were further confirmed by gas chromatography-mass spectrometry analysis. This study indicates that DDT appears to be oxidized by a dioxygenase in A. eutrophus A5 and that the products of this oxidation are subsequently subjected to ring fission to eventually yield 4-chlorobenzoic acid as a major stable intermediate.  相似文献   

5.
Resting cells of bacteria grown in the presence of diphenylmethane oxidized substituted analogs such as 4-hydroxydiphenylmethane, bis(4-hydroxyphenyl)methane, bis(4-chlorophenyl)methane (DDM), benzhydrol, and 4,4'-dichlorobenzhydrol. Resting cells of bacteria grown with benzhydrol as the sole carbon source oxidized substituted benzhydrols such as 4-chlorobenzhydrol, 4,4'-dichlorobenzhydrol, and other metabolites of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), such as DDM and bis(4-chlorophenyl)acetic acid. Bacteria and fungi converted 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, DDM, 4,4'-dichlorobenzhydrol, and 4,4'-dichlorobenzophenone. Aspergillus conicus converted 55% of bis(4-chlorophenyl)acetic acid to unidentified or unextractable water-soluble products. Aspergillus niger and Penicillium brefeldianum converted 12.4 and 24.6%, respectively, of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to water-soluble and unidentified products. 4-Chlorophenylacetic acid, a product of ring cleavage, was formed from DDM by a false smut fungus of rice. A. niger converted 4,4'-dichlorobenzophenone to 4-chlorobenzophenone and a methylated 4-chlorobenzophenone.  相似文献   

6.
7.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

8.
Resting cells of bacteria grown in the presence of diphenylmethane oxidized substituted analogs such as 4-hydroxydiphenylmethane, bis(4-hydroxyphenyl)methane, bis(4-chlorophenyl)methane (DDM), benzhydrol, and 4,4'-dichlorobenzhydrol. Resting cells of bacteria grown with benzhydrol as the sole carbon source oxidized substituted benzhydrols such as 4-chlorobenzhydrol, 4,4'-dichlorobenzhydrol, and other metabolites of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), such as DDM and bis(4-chlorophenyl)acetic acid. Bacteria and fungi converted 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, DDM, 4,4'-dichlorobenzhydrol, and 4,4'-dichlorobenzophenone. Aspergillus conicus converted 55% of bis(4-chlorophenyl)acetic acid to unidentified or unextractable water-soluble products. Aspergillus niger and Penicillium brefeldianum converted 12.4 and 24.6%, respectively, of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane to water-soluble and unidentified products. 4-Chlorophenylacetic acid, a product of ring cleavage, was formed from DDM by a false smut fungus of rice. A. niger converted 4,4'-dichlorobenzophenone to 4-chlorobenzophenone and a methylated 4-chlorobenzophenone.  相似文献   

9.
Biodegradation of crystal violet (N,N,N',N',N',N'-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N'-pentamethylpararosaniline, N,N,N',N'-tetramethylpararosaniline, and N,N',N'-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.  相似文献   

10.
Extensive biodegradation of pentachlorophenol (PCP) by the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance and mineralization of [14C]PCP in nutrient nitrogen-limited culture. Mass balance analyses demonstrated the formation of water-soluble metabolites of [14C]PCP during degradation. Involvement of the lignin-degrading system of this fungus was suggested by the fact the time of onset, time course, and eventual decline in the rate of PCP mineralization were similar to those observed for [14C]lignin degradation. Also, a purified ligninase was shown to be able to catalyze the initial oxidation of PCP. Although biodegradation of PCP was decreased in nutrient nitrogen-sufficient (i.e., nonligninolytic) cultures of P. chrysosporium, substantial biodegradation of PCP did occur, suggesting that in addition to the lignin-degrading system, another degradation system may also be responsible for some of the PCP degradation observed. Toxicity studies showed that PCP concentrations above 4 mg/liter (15 microM) prevented growth when fungal cultures were initiated by inoculation with spores. The lethal effects of PCP could, however, be circumvented by allowing the fungus to establish a mycelial mat before adding PCP. With this procedure, the fungus was able to grow and mineralize [14C]PCP at concentrations as high as 500 mg/liter (1.9 mM).  相似文献   

11.
An isolated bacterium, Alcaligenes denitrificans ITRC-4, metabolizes 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) under both aerobic and anaerobic conditions. The aerobic metabolism is inhibited by 38% and 47% in the presence of 1.0 g L(-1) of sodium acetate and sodium succinate, respectively, but remains uninhibited in the presence of 1.0 g L(-1) of glucose. Also, the metabolism is inhibited completely in the presence of biphenyl vapors, as well as 0.8 g L(-1) of 2,2'-bipyridyl. Under anaerobic conditions, DDT is metabolized into 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane (DDD), which is further enhanced by 50% in the presence of 1.0 g L(-1) of glucose. Besides, the bacterium also metabolizes 4-chlorobenzoate, which is accompanied by the release of chloride ions.  相似文献   

12.
Biodegradation of crystal violet (N,N,N',N',N',N'-hexamethylpararosaniline) in ligninolytic (nitrogen-limited) cultures of the white rot fungus Phanerochaete chrysosporium was demonstrated by the disappearance of crystal violet and by the identification of three metabolites (N,N,N',N',N'-pentamethylpararosaniline, N,N,N',N'-tetramethylpararosaniline, and N,N',N'-trimethylpararosaniline) formed by sequential N-demethylation of the parent compound. Metabolite formation also occurred when crystal violet was incubated with the extracellular fluid obtained from ligninolytic cultures of this fungus, provided that an H2O2-generating system was supplied. This, as well as the fact that a purified ligninase catalyzed N-demethylation of crystal violet, demonstrated that biodegradation of crystal violet by this fungus is dependent, at least in part, upon its lignin-degrading system. In addition to crystal violet, six other triphenylmethane dyes (pararosaniline, cresol red, bromphenol blue, ethyl violet, malachite green, and brilliant green) were shown to be degraded by the lignin-degrading system of this fungus. An unexpected result was the finding that substantial degradation of crystal violet also occurred in nonligninolytic (nitrogen-sufficient) cultures of P. chrysosporium, suggesting that in addition to the lignin-degrading system, another mechanism exists in this fungus which is also able to degrade crystal violet.  相似文献   

13.
Cladosporium sp. strain AJR318,501 was isolated from DDT-contaminated soil by its ability to decolourise the polymeric dye, Poly R-478. When inoculated into potato/dextrose broth containing 100 mg of DDT l–1, a 21% decrease in DDT concentration was observed 12 days after its addition, however, no transformation products were detected by gas chromatography. TLC of culture medium and mycelia extracts revealed 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane and five unknown transformation products associated with the mycelia.  相似文献   

14.
The thyroid-stimulating hormone (TSH) receptor (TSHr) was made specifically fluorescent by insertion of a tetracysteine motif (TSHr-FlAsH) into the C-terminal end and transiently transfected into COS-7 and HeLa cells. The observation that TSH administration caused the intracellular level of cAMP to increase in both TSHr-FlAsH-transfected cell types indicated that the FlAsH binding motif did not alter normal TSHr functioning. When transfected into HeLa cells and stimulated with TSH, the TSHr-FlAsH receptor exhibited a pronounced perinuclear labelling pattern, whereas labelling remained on the cell surface following pre-incubation with 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT). Chinese hamster ovary (CHO)-TSHr cells probed with anti-TSHr antibodies were fluorescent mainly in the proximity of the plasma membrane, with fluorescence being primarily restricted to a juxta-nuclear position when exposed to 10 mU/ml TSH for 1 or 5 min. However, in the presence of DDT, the anti-TSHr fluorescence maintained a peripheral location along the cell plasma membrane, even if CHO-TSHr cells were stimulated with TSH for 1 and 5 min. To verify that DDT acted specifically on the TSHr, CHO cells transfected with the A2a receptor were used as controls. Following a 1-min stimulation with 5’-(N-ethyl-carboxamido)-adenosine, A2a receptors were gradually internalized regardless of the presence of DDT in the culture medium. Finally, immunoelectron microscopy of CHO-TSHr cells showed that a 1-min exposure to TSH sufficed to displace anti-TSHr antibodies tagged with 10-nm gold particles into coated pits and vesicles but that their superficial location was retained along the plasma membrane in the presence of DDT.  相似文献   

15.
16.
A single dose of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) (160 mg/kg i.p.) enhanced the monooxygenase step of drug biotransformation in rat liver. The O-demethylation of p-nitroanisole was especially increased, a peak in activity approximately 5-fold compared with controls being attained in 7 days. On the other hand, there was only a 2-fold increase in aryl hydrocarbon hydroxylase activity.DDT increased the cytochrome P-450 content of the liver, this increase coincided well with that in p-nitroanisole O-demethylation activity.The UDPglucuronosyltransferase activity of liver microsomes was not enhanced by DDT administration, unless the microsomes were pretreated to reveal latent activity prior to assay. After trypsin digestion of microsomes a maximum increase in activity of approximately 3-fold was observed as a result of DDT dosage. The canonic surfactant cetylpyridinium chloride was less active in revealing the latent UDP-glucuronosyltransferase activity, and two other membrane perturbants, the detergent digitonin and phospholipase A, were unable to show enhancement in UDPglucuronosyltransferase as a result of DDT dosage.  相似文献   

17.
18.
The effect of DDT in resistant and susceptible barley on variousphotosynthetic electron transport activities involving photosystems1 and 2 functioning alone and in series is reported. Whereasnone of the measured activities in resistant barleys were affectedby DDT treatment, in susceptible barley two sites of interactionof DDT with the photosynthetic electron transport chain weredemonstrated. The first site of inhibition was located beforephotosystem 2, between the sites of electron donation from diphenylcarbazideat pH 6·0 and 8·0, and on the oxidizing side ofthe inhibitions resulting from tris washing or heat treatment.Mn2+ ions, which can act as donor before photesystem 2, appearedto donate electrons on the H2O side of the site of inhibitionby DDT. The second site of DDT inhibition was located in thepath of electron flow from photosystem 2 to NADP+ or diquat,and was demonstrated by using dichlorophenolindophenol and phenylenediaminesas electron donors.  相似文献   

19.
The metabolites of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) and 1,1-dichloro-2,2-bis(p-chlorophenyl)ethane (DDD) found in the urine of female Swiss mice are reported. The metabolites of DDT are DDD, 1-chloro-2,2-bis(p-chlorophenyl)ethene (DDMU), 1,1-dichloro-2,2-bis(p-chlorophenyl)ethene (DDE), 2,2-bis(p-chlorophenyl)acetic acid (DDA), 2-hydroxy-2,2-bis(p-chlorophenyl)acetic acid (αOH-DDA) and 2,2-bis(p-chlorophenyl)ethanol (DDOH), while DDD afforded DDMU, DDE, DDA, αOH-DDA and DDOH. The relative excreted levels of DDA and DDOH and the absence of 2,2-bis(p-chlorophenyl)acetaldehyde (DDCHO) are not consistent with the generally accepted path way for DDA formation, which involves sequential metabolism of DDT and DDD via DDOH to afford DDA. The quantitative results are interpreted to mean that DDA is formed by hydroxylation at the chlorinated sp3-side chain carbon of DDD to give 2,2-bis(p-chlorophenyl)acetyl chloride (DDA-Cl), which in turn is hydrolyzed to DDA. The excretion of αOH-DDA from both DDT- and DDD-treated mice has never been previously observed. It is suggested that this metabolite arises from the initial epoxidation of DDMU, a metabolite of DDT and DDD, to yield 1,2-epoxy-1-chloro-2,2-bis(p-chlorophenyl)ethane (DDMU-epoxide). This chloroepoxide is then hydrolyzed and oxidized to produce the αOH-DDA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号