首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we use the cross-impact analysis to define the relationship among impact, mutation, and outbreak of bird flu. Then we use the distribution rank, which is developed by us over last several years, to quantify the mutations from amino acid sequences of 134 hemagglutinins and 97 neuraminidases. With the help of Bayesian equation, we calculate the probability of occurring of mutation in H5, H6, and H9 hemagglutinins, and N1 and N2 neuraminidases. Finally, we estimate the probability of occurring of mutation with different intensities of an impact. Although we have no means to predict an impact, which is severe enough to lead to the mutations in hemagglutinins and neuraminidases resulting in the outbreak of bird flu, we can in principle monitor the changes in distribution rank along the time course, and predict the trend of mutations, even to predict the degree of outbreak of bird flu.  相似文献   

2.
Wu G  Yan S 《Amino acids》2008,34(1):81-90
Summary. In this proof-of-concept study, we attempt to determine whether the cause-mutation relationship defined by randomness is protein dependent by predicting mutations in H5N1 neuraminidases from influenza A virus, because we have recently conducted several concept-initiated studies on the prediction of mutations in hemagglutinins from influenza A virus. In our concept-initiated studies, we defined the randomness as a cause for mutation, upon which we built a cause-mutation relationship, which is then switched into the classification problem because the occurrence and non-occurrence of mutations can be classified as unity and zero. Thereafter, we used the logistic regression and neural network to solve this classification problem to predict the mutation positions in hemagglutinins, and then used the amino acid mutating probability to predict the would-be-mutated amino acids. As the previous results were promising, we extend this approach to other proteins, such as H5N1 neuraminidase in this study, and further address various issues raised during the development of this approach. The result of this study confirms that we can use this cause-mutation relationship to predict the mutations in H5N1 neuraminidases. Authors’ address: Guang Wu, Computational Mutation Project, DreamSciTech Consulting 301, Building 12, Nanyou A-zone, Jiannan Road, Shenzhen, Guangdong Province CN-518054, China  相似文献   

3.
In a continuation of our attempt to predict mutations in proteins from influenza A virus, this study attempted to answer the question of whether distinguishing between arginine, leucine and serine can improve the predictability as these residues are governed by different probabilistic mechanism translating from RNA codons to amino acids. In this study, we made the prediction based on the mutation relation among 299 H5N1 hemagglutinins of influenza A virus. Then, we compared the results based on the distinguishing of arginine, leucine and serine with the results without distinguishing of arginine, leucine and serine. The results show that the prediction together with distinguishing between arginine, leucine and serine is better than prediction without distinguishing between these residues.  相似文献   

4.
Probably the best way to predict mutations is to find the cause for mutations, by which the cause–mutation relationship can be built. However, many causes which have resulted in mutations in the past might not leave any trace due to the changes in environments. As well, the current proteins may not be sensitive to the causes, which led to mutations in the past, because of evolution. Thus we might have recorded many mutations, but few of their corresponding causes, and it would be difficult to establish the one-to-one cause–mutation relationship. However, the internal power engineering mutations within a protein would exist, of which randomness should play an important role. Since 1999, we have developed three methods to quantify the randomness within a protein by which we can build a cause–mutation relationship because we can classify the occurrence and non-occurrence of mutation as unity and zero, and transfer this relationship into the classification problem, which can be solved using logistic regression. Recently, we used the logistic regression to predict the mutation positions in H5N1 hemagglutinins from influenza A virus, and applied the amino-acid mutating probability to predict the would-be-mutated amino acids at predicted positions as the concept-initiated study. However, we still need to conduct many proof-of-concept studies to test whether this cause–mutation relationship is independent of protein subtypes, whether the logistic regression is powerful enough, etc. In this study, we attempted to use the logistic regression to predict the mutation positions in H3N2 hemagglutinins of influenza A virus from North America to answer the questions in the proof-of-concept stage.  相似文献   

5.
The complete nucleotide sequence of the influenza C/California/78 virus RNA 4 was obtained by using cloned cDNA derived from the RNA segment. This gene is 2,071 nucleotides long and can code for a polypeptide of 654 amino acids. Although there are no convincing sequence homologies between RNA 4 and the hemagglutinin genes of influenza A and B viruses, we suggest, on the basis of structural features, that RNA 4 of the influenza C virus codes for the hemagglutinin. The structural features which are common to the hemagglutinins of influenza A, B, and C viruses include (i) a hydrophobic signal peptide, (ii) an arginine cleavage site between the hemagglutinin 1 and 2 subunits, (iii) hydrophobic regions at the amino and carboxyl termini of the hemagglutinin 2 subunit, and (iv) several conserved cysteine residues. Additional evidence that RNA 4 of influenza C virus codes for the hemagglutinin is that the tripeptide Ile-Phe-Gly, known to be present at the amino terminus of the hemagglutinin 2 subunit of influenza C virus, is encoded by RNA 4 at a point immediately adjacent to the presumptive arginine cleavage site. The lack of primary sequence homology between the influenza C virus hemagglutinin and the influenza A or B virus hemagglutinins, which all have similar functions, might be attributed to convergent rather than divergent evolution. However, the structural similarities among the influenza A, B, and C virus hemagglutinins strongly suggest that the three hemagglutinin genes have diverged from a common precursor.  相似文献   

6.
We used a panel of monoclonal antibodies to H9 hemagglutinin to select 18 escape mutants of mouse-adapted influenza A/Swine/Hong Kong/9/98 (H9N2) virus. Cross-reactions of the mutants with the antibodies and the sequencing of hemagglutinin genes revealed two minimally overlapping epitopes. We mapped the amino acid changes to two areas of the recently reported three-dimensional structure of A/Swine/Hong Kong/9/98 hemagglutinin. The grouping of the antigenically relevant amino acid positions in H9 hemagglutinin differs from the pattern observed in H3 and H5 hemagglutinins. Several positions in site B of H3 hemagglutinin are distributed in two sites of H9 hemagglutinin. Unlike any subtype analyzed so far, H9 hemagglutinin does not contain an antigenic site corresponding to site A in H3 hemagglutinin. Positions 145 and 193 (H3 numbering), which in H3 hemagglutinin belong to sites A and B, respectively, are within one site in H9 hemagglutinin. This finding is consistent with the peculiarity of the three-dimensional structure of the H9 molecule, that is, the absence from H9 hemagglutinin of the lateral loop that forms site A in H3 and the equivalent site in H5 hemagglutinins. The escape mutants analyzed displayed phenotypic variations, including decreased virulence for mice and changes in affinity for sialyl substrates. Our results demonstrate a correlation between intersubtype differences in three-dimensional structure and variations among subtypes in the distribution of antigenic areas. Our findings also suggest that covariation and pleiotropic effects of antibody-selected mutations may be important in the evolution of H9 influenza virus, a possible causative agent of a future pandemic.  相似文献   

7.
In this study, we used the 183 translation probabilities between RNA codons and mutated amino acids to construct the theoretical distributions of mutated amino acids in hemagglutinins of influenza A virus. We then compared the actual distributions of mutated amino acids from 953 hemagglutinins with their theoretical ones. The results demonstrated that mutated amino acids generally follow the direction of the theoretical distributions governed by RNA codons. This, in turn, highlights the mutation trend of amino acids in hemagglutinins and provides a method for estimating possible mutations in a protein according to its theoretical distributions of mutated amino acids.  相似文献   

8.
Rapid evolution of H5N1 influenza viruses in chickens in Hong Kong   总被引:12,自引:0,他引:12       下载免费PDF全文
The H5N1 avian influenza virus that killed 6 of 18 persons infected in Hong Kong in 1997 was transmitted directly from poultry to humans. Viral isolates from this outbreak may provide molecular clues to zoonotic transfer. Here we demonstrate that the H5N1 viruses circulating in poultry comprised two distinguishable phylogenetic lineages in all genes that were in very rapid evolution. When introduced into new hosts, influenza viruses usually undergo rapid alteration of their surface glycoproteins, especially in the hemagglutinin (HA). Surprisingly, these H5N1 isolates had a large proportion of amino acid changes in all gene products except in the HA. These viruses maybe reassortants each of whose HA gene is well adapted to domestic poultry while the rest of the genome arises from a different source. The consensus amino acid sequences of "internal" virion proteins reveal amino acids previously found in human strains. These human-specific amino acids may be important factors in zoonotic transmission.  相似文献   

9.
以H5N2亚型禽流感病毒毒株血凝素蛋白裂解位点碱性氨基酸为研究对象,对其密码子偏好性和对应mRNA序列的折叠二级结构特点进行研究和分析。旨在探讨裂解位点氨基酸对应mRNA核苷酸片段的二级结构与病毒致病力的关系,希望能对禽流感病毒的研究提供一些基础性信息。将mRNA样本按照序列等步长递增的方法,用RNAstructure 4.1程序预测这些样本的动态延伸折叠二级结构。序列和结构的分析结果:裂解位点的碱性氨基酸对富含腺嘌呤的密码子有强烈偏好;与碱性氨基酸对应的mRNA片段上的核苷酸主要位于折叠二级结构的单链环区,少数位于配对螺旋区。结果表明:裂解位点氨基酸对应的mRNA核苷酸形成发夹端环的大小与其碱性氨基酸的多少具有正相关性。  相似文献   

10.
Current influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic group 2 hemagglutinin), and influenza B virus components. These vaccines induce good protection against closely matched strains by predominantly eliciting antibodies against the membrane distal globular head domain of their respective viral hemagglutinins. This domain, however, undergoes rapid antigenic drift, allowing the virus to escape neutralizing antibody responses. The membrane proximal stalk domain of the hemagglutinin is much more conserved compared to the head domain. In recent years, a growing collection of antibodies that neutralize a broad range of influenza virus strains and subtypes by binding to this domain has been isolated. Here, we demonstrate that a vaccination strategy based on the stalk domain of the H3 hemagglutinin (group 2) induces in mice broadly neutralizing anti-stalk antibodies that are highly cross-reactive to heterologous H3, H10, H14, H15, and H7 (derived from the novel Chinese H7N9 virus) hemagglutinins. Furthermore, we demonstrate that these antibodies confer broad protection against influenza viruses expressing various group 2 hemagglutinins, including an H7 subtype. Through passive transfer experiments, we show that the protection is mediated mainly by neutralizing antibodies against the stalk domain. Our data suggest that, in mice, a vaccine strategy based on the hemagglutinin stalk domain can protect against viruses expressing divergent group 2 hemagglutinins.  相似文献   

11.
A scheme for evolutionary interrelations of the H1-subunits of influenza hemagglutinin genes is proposed for the natural variants of influenza A virus of the H1N1-subtype. It is based on experimental data obtained by the authors and those reported in the literature. Differences among these viral isolates in their amino acid sequences and in the reaction of hemagglutinin inhibition obtained with a set of monoclonal antibodies are compared. The distinctions in the ability of the viruses to react with several monoclonal antibodies are attributed to differences in the primary structures of their hemagglutinins. Some aspects of hemagglutinin gene evolution are discussed in relation to vaccination.  相似文献   

12.
The nature of amino acid replacements in 16 drift variants of hemagglutinin H3 subtype and 5 drift variants of neuraminidase N2 subtype of the influenza A virus were studied. The dependences of relative replacement frequencies and relative quantities of frequent replacements upon differences of properties of substituted residues are plotted. In contrast to most of the known proteins, amino acid replacements in hemagglutinin and neuraminidase depend weakly on the physico-chemical parameters of amino acids. For the antigenic determinants studied the replacement frequencies were compared to those calculated according to two models: one for conservative replacements and the other for accidental mutation of the genetic code. The differences in the nature of amino acid replacements are found in four antigenic determinants of hemagglutinin. The replacements in experimentally selected proteins are shown to go beyond limitations of natural variants. The explanations of the reasons of low epidemicity of some strains and ineffective attempt to imitate the natural antigenic drift of viruses by using experimental selection are proposed. The causes of time-limited circulation of H3N2 influenza virus subtype are discussed.  相似文献   

13.
目的研究甲型流感病毒(H1N1)暴发流行以来中国各地甲型流感病毒血凝素(HA)的特征。方法搜索甲型流感病毒(H1N1)暴发流行以来中国各地报道的血凝素(HA)的氨基酸序列,比较当年不同时期血凝素(HA)的氨基酸序列的变化,并比较2009年报道的血凝素(HA)的氨基酸序列和2008年、2007年报道的血凝素(HA)的氨基酸序列作比较,以分析和前2年血凝素(HA)氨基酸序列相比所发生的变化。结果2009年中国各地甲型流感病毒(H1N1)的血凝素(HA)的氨基酸序列(人源)的同源性为99%-100%,但和2008年以及2007年的同源性非常低,分别为70%-77%和71%-90%。结论2009年暴发流行的甲型流感病毒(H1N1)的血凝素氨基酸序列较往年发生了很大程度的变异,这可能是今年甲型流感病毒(H1N1)暴发流行的主要原因。  相似文献   

14.
The global spread of highly pathogenic avian influenza A H5N1 viruses raises concerns about more widespread infection in the human population. Pre-pandemic vaccine for H5N1 clade 1 influenza viruses has been produced from the A/Viet Nam/1194/2004 strain (VN1194), but recent prevalent avian H5N1 viruses have been categorized into the clade 2 strains, which are antigenically distinct from the pre-pandemic vaccine. To understand the antigenicity of H5N1 hemagglutinin (HA), we produced a neutralizing monoclonal antibody (mAb12-1G6) using the pre-pandemic vaccine. Analysis with chimeric and point mutant HAs revealed that mAb12-1G6 bound to the loop (amino acid positions 140-145) corresponding to an antigenic site A in the H3 HA. mAb12-1G6 failed to bind to the mutant VN1194 HA when only 3 residues were substituted with the corresponding residues of the clade 2.1.3.2 A/Indonesia/5/05 strain (amino acid substitutions at positions Q142L, K144S, and S145P), suggesting that these amino acids are critical for binding of mAb12-1G6. Escape mutants of VN1194 selected with mAb12-1G6 carried a S145P mutation. Interestingly, mAb12-1G6 cross-neutralized clade 1 and clade 2.2.1 but not clade 2.1.3.2 or clade 2.3.4 of the H5N1 virus. We discuss the cross-reactivity, based on the amino acid sequence of the epitope.  相似文献   

15.
The complete nucleotide sequence of the hemagglutinin gene of influenza virus A/USSR/90/77 was determined. Comparison of hemagglutinin amino acid sequences from H1 field strains revealed five potential antigenic sites. Four of these sites correspond to those observed for H3 hemagglutinins, whereas the fifth apparently derives from differences in the glycosylation patterns between subtypes.  相似文献   

16.
Genes of an influenza A (H5N1) virus from a human in Hong Kong isolated in May 1997 were sequenced and found to be all avian-like (K. Subbarao et al., Science 279:393–395, 1998). Gene sequences of this human isolate were compared to those of a highly pathogenic chicken H5N1 influenza virus isolated from Hong Kong in April 1997. Sequence comparisons of all eight RNA segments from the two viruses show greater than 99% sequence identity between them. However, neither isolate’s gene sequence was closely (>95% sequence identity) related to any other gene sequences found in the GenBank database. Phylogenetic analysis demonstrated that the nucleotide sequences of at least four of the eight RNA segments clustered with Eurasian origin avian influenza viruses. The hemagglutinin gene phylogenetic analysis also included the sequences from an additional three human and two chicken H5N1 virus isolates from Hong Kong, and the isolates separated into two closely related groups. However, no single amino acid change separated the chicken origin and human origin isolates, but they all contained multiple basic amino acids at the hemagglutinin cleavage site, which is associated with a highly pathogenic phenotype in poultry. In experimental intravenous inoculation studies with chickens, all seven viruses were highly pathogenic, killing most birds within 24 h. All infected chickens had virtually identical pathologic lesions, including moderate to severe diffuse edema and interstitial pneumonitis. Viral nucleoprotein was most frequently demonstrated in vascular endothelium, macrophages, heterophils, and cardiac myocytes. Asphyxiation from pulmonary edema and generalized cardiovascular collapse were the most likely pathogenic mechanisms responsible for illness and death. In summary, a small number of changes in hemagglutinin gene sequences defined two closely related subgroups, with both subgroups having human and chicken members, among the seven viruses examined from Hong Kong, and all seven viruses were highly pathogenic in chickens and caused similar lesions in experimental inoculations.  相似文献   

17.
Mapping mutations in influenza A virus resistant to norakin   总被引:2,自引:0,他引:2  
To elucidate the mode of action of norakin against influenza A virus we sequenced the hemagglutinin gene of 11 norakin-resistant mutants. Resistance was coupled with 1-3 amino acid exchanges. The majority of mutations was localized in the HA2 polypeptide and was mostly associated with changes in charge or polarity of the amino acids. The amino acid substitutions are discussed in the context of the 3D structure of X31 hemagglutinin considered to be representative of the influenza hemagglutinins. Most of the mutations appear to destabilize the pH 7.0 structure by distorting or destroying hydrogen bonds as well as salt-bridges which are responsible for intra- and intersubunit contacts, while others destabilize the location of the fusion peptide, facilitating conformational changes in the presence of the inhibitor.  相似文献   

18.
Nucleotide sequences have been determined for complementary DNA transcribed from the 3' ends of RNA segments 7 (matrix gene) and 8 (nonstructural gene) from a number of human influenza A viruses isolated over a period of 43 years and representing H0N1, H1N1, H2N2, and H3N2 subtypes. The pattern of nucleotide variation in both genes suggests that RNA segments 7 and 8 were conserved during the reassortment events which were responsible for the antigenic shifts H1N1 leads to H2N2 and H2N2 leads to H3N2. During the 23-year period between the isolation of A/PR/8/34(H0N1) and A/RI/5-/57(H2N2), substitutions have occurred at 7 of 230 nucleotides in RNA segment 7 and 13 of 220 nucleotides in RNA segment 8, and in 20 years A/RI/5-/57(H2N2) to A/Canberra Grammar/77(H3N2) substitutions have occurred at 5 of 230 nucleotides in RNA segment 7 and 12 of 220 nucleotides in RNA segment 8. These give rise to 2 of 67, 5 of 64, 1 of 67, and 5 of 64 amino acid changes, respectively. The number of nucleotide and amino acid changes observed is of the same order of magnitude as that which occurs over a comparable period of drift in RNA segments 4 and 6, which code for the variable antigenic determinants hemagglutinin and neuraminidase.  相似文献   

19.
The attachment of the hemagglutinin protein of the H1N1 subtype of the pandemic influenza A virus to the sialic acid receptor Sia(α2-6)Gal has contributed to the ability of the virus to replicate in the human body and transmit among humans. In view of the pandemic caused by the replication and transmission of the H1N1 virus, more studies on the specificity of hemagglutinin towards sialic acid and how it affects the replication and transmission ability of this virus among humans are needed. In this study, we have applied sequence, structural and functional analyses to the hemagglutinin protein of the pandemic H1N1 virus, with the aim of identifying amino acid mutation patterns that affect its specificity to sialic acid. We have also employed a molecular docking method to evaluate the complex formed between hemagglutinin protein and the sialic acid receptor. Based on our results, we suggest two possible mutation patterns, namely (1) positions 190 and 225 from glutamic acid and glycine to aspartic acid (E190D in A/Brevig Mission/1/18 (H1N1), A/New York/1/18(H1N1) and A/South Carolina/1/1918(H1N1) and G225D in A/South Carolina/1/1918(H1N1), A/South Carolina/1/1918(H1N1), and A/Puerto Rico/8/34(H1N1)), and (2) positions 226 and 228 from glutamine and glycine to leucine and serine, respectively (Q226L and G228S in A/Guiyang/1/1957(H2N2), A/Kayano/57(H2N2), A/Aichi/2/1968(H3N2), A/Hong Kong/1/1968(H3N2) and A/Memphis/1/68(H3N2)) that can potentially contribute to the specificity of hemagglutinin to Sia(α2-6)Gal, thereby enabling the replication and transmission of virus within and among humans.  相似文献   

20.
The nucleotide sequence was determined for the hemagglutinin gene of the Hong Kong subtype influenza strain A/Bangkok/1/79. The amino acid sequence predicted from these data shows a total of 36 amino acid changes as compared with hemagglutinin for a 1968 Hong Kong strain, 11 more than had occurred in a 1975 strain. The distribution of these changes confirmed that there are conserved and highly variable regions in hemagglutinin as the viral gene evolves during antigenic drift in the Hong Kong subtype. Of the four variable regions found in this study, only two have been seen previously. Correlation of highly variable areas in the hemagglutinins of Hong Kong subtype field strains with sites of amino acid changes in antigenically distinct influenza variants enabled us to predict likely antigenic regions of the protein. The results support and extend similar predictions made recently, based on the three-dimensional arrangement of hemagglutinin from a 1968 influenza strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号