首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A species' response to climate change depends on the interaction of biotic and abiotic factors that define future habitat suitability and species' ability to migrate or adapt. The interactive effects of processes such as fire, dispersal, and predation have not been thoroughly addressed in the climate change literature. Our objective was to examine how life history traits, short-term global change perturbations, and long-term climate change interact to affect the likely persistence of an oak species--Quercus engelmannii (Engelmann oak). Specifically, we combined dynamic species distribution models, which predict suitable habitat, with stochastic, stage-based metapopulation models, which project population trajectories, to evaluate the effects of three global change factors--climate change, land use change, and altered fire frequency--emphasizing the roles of dispersal and seed predation. Our model predicted dramatic reduction in Q. engelmannii abundance, especially under drier climates and increased fire frequency. When masting lowers seed predation rates, decreased masting frequency leads to large abundance decreases. Current rates of dispersal are not likely to prevent these effects, although increased dispersal could mitigate population declines. The results suggest that habitat suitability predictions by themselves may under-estimate the impact of climate change for other species and locations.  相似文献   

2.
Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of bird populations.  相似文献   

3.
Organisms are projected to shift their distribution ranges under climate change. The typical way to assess range shifts is by species distribution models (SDMs), which predict species’ responses to climate based solely on projected climatic suitability. However, life history traits can impact species’ responses to shifting habitat suitability. Additionally, it remains unclear if differences in vital rates across populations within a species can offset or exacerbate the effects of predicted changes in climatic suitability on population viability. In order to obtain a fuller understanding of the response of one species to projected climatic changes, we coupled demographic processes with predicted changes in suitable habitat for the monocarpic thistle Carlina vulgaris across northern Europe. We first developed a life history model with species‐specific average fecundity and survival rates and linked it to a SDM that predicted changes in habitat suitability through time with changes in climatic variables. We then varied the demographic parameters based upon observed vital rates of local populations from a translocation experiment. Despite the fact that the SDM alone predicted C. vulgaris to be a climate ‘winner’ overall, coupling the model with changes in demography and small‐scale habitat suitability resulted in a matrix of stable, declining, and increasing patches. For populations predicted to experience declines or increases in abundance due to changes in habitat suitability, altered fecundity and survival rates can reverse projected population trends.  相似文献   

4.
Dispersal-related life-history trade-offs in a butterfly metapopulation   总被引:6,自引:0,他引:6  
1. Recent studies on butterflies have documented apparent evolutionary changes in dispersal rate in response to climate change and habitat change. These studies often assume a trade-off between dispersal rate (or flight capacity) and reproduction, which is the rule in wing-dimorphic species but might not occur equally in wing-monomorphic species such as butterflies. 2. To investigate the relationship between dispersal rate and fecundity in the Glanville fritillary butterfly Melitaea cinxia we recorded lifetime individual movements, matings, ovipositions, and maximal life span in a large (32 x 26 m) population cage in the field. Experimental material was obtained from 20 newly established and 20 old local populations within a large metapopulation in the Aland Islands in Finland. 3. Females of the Glanville fritillary from newly established populations are known to be more dispersive in the field, and in the cage they showed significantly greater mobility, mated earlier, and laid more egg clutches than females from old populations. The dispersive females from new populations exhibited no reduced lifetime fecundity in the cage, but they had a shorter maximal life span than old-population females. 4. These results challenge the dispersal-fecundity trade-off for nonmigratory butterflies but instead suggest a physiological trade-off between high metabolic performance and reduced maximal life span. High metabolic performance may explain high rates of dispersal and oviposition in early life. 5. In fragmented landscapes, an ecological trade-off exists between being more dispersive and hence spending more time in the landscape matrix vs. having more time for reproduction in the habitat. We estimate with a dispersal model parameterized for the Glanville fritillary that the lifetime egg production is 4% smaller on average in the more dispersive butterflies in a representative landscape, with much variation depending on landscape structure in the neighbourhood of the natal patch, from--26 to 45% in the landscape analysed in this paper.  相似文献   

5.
Habitat loss and climate change are key drivers of global biodiversity declines but their relative importance has rarely been examined. We attempted to attribute spatially divergent population trends of two Afro-Palaearctic migrant warbler species, Willow Warbler Phylloscopus trochilus and Common Chiffchaff Phylloscopus collybita, to changes in breeding grounds climate or habitat. We used bird counts from over 4000 sites across the UK between 1994 and 2017, monitored as part of the BTO/JNCC/RSPB Breeding Bird Survey. We modelled Willow Warbler and Common Chiffchaff population size and growth in relation to habitat, climate and weather. We then used the abundance model coefficients and observed environmental changes to determine the extent to which spatially varying population trends in England and Scotland were consistent with attribution to climate and habitat changes. Both species' population size and growth correlated with habitat, climate and weather on their breeding grounds. Changes in habitat, in particular woodland expansion, could be linked to small population increases for both species in England and Scotland. Both species' populations correlated more strongly with climate than weather, and both had an optimum breeding season temperature: 11°C for Willow Warbler and around 13.5°C for Common Chiffchaff (with marginally different predictions from population size and growth models). Breeding ground temperature increases, therefore, had the potential to have caused some of the observed Willow Warbler declines in England (where the mean breeding season temperature was 12.7°C) and increases in Scotland (mean breeding season temperature was 10.2°C), and some of the differential rates of increase for Common Chiffchaff. However, much of the variation in species' population abundance and trends were not well predicted by our models and could be due to other factors, such as species interactions, habitat and climate change in their wintering grounds and on migration. This study provides evidence that the effect of climate change on a species may vary spatially and may switch from being beneficial to being detrimental if a temperature threshold is exceeded.  相似文献   

6.
I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how geographic variation in traits and life histories influences ranges. This geographic variation reflects the potential for species to adapt to environmental change. I then consider the range dynamics of the closely related Sceloporus graciosus. Comparing predicted ranges and actual current ranges reveals how dispersal limitations, species interactions, and habitat requirements influence the occupied portions of thermally suitable ranges. The dynamic model predicts individualistic responses to a uniform 3 degrees C warming but a northward shift in the northern range boundary for all populations and species. In contrast to standard correlative climate envelope models, the extent of the predicted northward shift depends on organism traits and life histories. The results highlight the limitations of correlative models and the need for more dynamic models of species' ranges.  相似文献   

7.
Changes in the seasonal timing of life history events are documented effects of climate change. We used a general model to study how dispersal and competitive interactions affect eco-evolutionary responses to changes in the temporal distribution of resources over the season. Specifically, we modeled adaptation of the timing of reproduction and population dynamic responses in two competing populations that disperse between two habitats characterized by an early and late resource peak. We investigated three scenarios of environmental change: (1) food peaks advance in both habitats, (2) in the late habitat only and (3) in the early habitat only. At low dispersal rates the evolutionarily stable timing of reproduction closely matched the local resource peak and the environmental change typically caused population decline. Larger dispersal rates rendered less intuitive eco-evolutionary population responses. First, dispersal caused mismatch between evolutionarily stable timing of reproduction and local resource peaks and as a result, reproductive output for subpopulations could increase as well as decrease when resource availability underwent temporal shifts. Second, population responses were contingent on competition between populations. This could accelerate population declines and cause extinctions or even reverse population trends from negative to positive compared to the low dispersal case. When dispersal rate was large and the early resource peak was advanced available niche space was reduced. Hence, even when a population survived the environmental change and obtained positive equilibrium population density, subsequent adaptation of competing populations could drive it to extinction due to convergent evolution and competitive exclusion. These results shed new light on the role of competition and dispersal for the evolution of timing of life history events and provide guidelines for understanding short and long-term population response to climate change.  相似文献   

8.
Dispersal is a key process in population and evolutionary ecology. Individual decisions are affected by fitness consequences of dispersal, but these are difficult to measure in wild populations. A long‐term dataset on a geographically closed bird population, the Mauritius kestrel, offers a rare opportunity to explore fitness consequences. Females dispersed further when the availability of local breeding sites was limited, whereas male dispersal correlated with phenotypic traits. Female but not male fitness was lower when they dispersed longer distances compared to settling close to home. These results suggest a cost of dispersal in females. We found evidence of both short‐ and long‐term fitness consequences of natal dispersal in females, including reduced fecundity in early life and more rapid aging in later life. Taken together, our results indicate that dispersal in early life might shape life history strategies in wild populations.  相似文献   

9.
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process.  相似文献   

10.
Montane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north‐eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.  相似文献   

11.
Recent global warming threatens many species and has already caused population‐ and species‐level extinctions. In particular, high risks of extinction are expected for isolated populations of species with low dispersal abilities. These predictions rely on widely used ‘climatic envelope’ models, while individual responses, the ultimate driver of a species response to climate change, have been most often neglected. Here, we report on some changes in life‐history traits of a dispersal‐limited reptile species (a poorly studied taxa) living in isolated populations. Using long‐term data on common lizards collected in southern France, we show that individual body size dramatically increased in all the four populations studied over the past 18 years. This increase in body size in all age classes appeared related to a concomitant increase in temperature experienced during the first month of life (August). Daily maximum temperature in August increased by 2.2°C and yearling snout‐vent‐length increased by about 28%. As a result, adult female body size increased markedly, and, as fecundity is strongly dependent on female body size, clutch size and total reproductive output also increased. For one population where capture–recapture data were available, adult survival was positively related to May temperature. All fitness components investigated therefore responded positively to the increase in temperature, such that it might be concluded that the common lizard has been advantaged by the shift in temperature. We contrast these short‐term results with the long‐term habitat‐based prediction that these populations located close to mountain tops on the southern margin of the species range should be unable to cope with the alteration of their habitat. To achieve a better prediction of a species persistence, one will probably need to combine both habitat and individual‐based approaches.  相似文献   

12.
A species’ susceptibility to environmental change might be predicted by its ecological and life‐history traits. However, the effects of such traits on long‐term bird population trends have not yet been assessed using a comprehensive set of explanatory variables. Moreover, the extent to which phylogeny affects patterns in the interspecific variability of population changes is unclear. Our study focuses on the interspecific variability in long‐term population trends and annual population fluctuations of 68 passerine species in the Czech Republic, assessing the effects of eight life‐history and five ecological traits. Ordination of life‐history traits of 68 species revealed a life‐history gradient, from ‘r‐selected’ (e.g. small body mass, short lifespan, high fecundity, large clutch size) to ‘K‐selected’ species. r‐selected species had more negative population trends than K‐selected species, and seed‐eaters declined compared with insectivores. We suggest that the r‐selected species probably suffer from widespread environmental changes, and the seed‐eaters from current changes in agriculture and land use. Populations of residents fluctuated more than populations of short‐distance migrants, probably due to the effect of winter climatic variability. Variance partitioning at three taxonomic levels showed that whereas population trends, population fluctuations and habitat specialization expressed the highest variability at the species level, most life‐history traits were more variable at higher taxonomic levels. These results explain the loss of statistical power in the relationship between life histories and population trends after controlling for phylogeny. However, we argue that a lack of significance after controlling for phylogeny should not reduce the value of such results for conservation purposes.  相似文献   

13.
Global climate change has already caused local declines and extinctions. These losses are generally thought to occur because climate change is progressing too rapidly for populations to keep pace. Based on this hypothesis, numerous predictive frameworks have been developed to project future range shifts and changes in population dynamics resulting from global climate change. However, recent empirical work has demonstrated that seasonally asynchronous climate change regimes – when a region is warming during some parts of the year, but cooling in others – are constraining species' responses to climate change more strongly than rapid warming, leading to intra‐specific variation in responses to climate change and local population declines. Here, we couple a review of the literature related to asynchronous climate change regimes with meta‐population simulations and an analysis of long‐term North American climate trends to show that seasonally asynchronous regimes are occurring throughout most of North America and that their current spatial distribution may be a strong barrier to dispersal and gene flow across many species' ranges. Thus, even though adaptation to climate change may potentially be more common and rapid than previously thought, species whose ranges overlap with asynchronous regimes will likely succumb to local declines that may be difficult to mitigate via dispersal. Future climate‐related predictive frameworks should therefore incorporate asynchronous regimes as well as more traditional measures of climate velocity in order to fully capture the array of potential future climate change scenarios.  相似文献   

14.
Common birds facing global changes: what makes a species at risk?   总被引:3,自引:0,他引:3  
Climate change, habitat degradation, and direct exploitation are thought to threaten biodiversity. But what makes some species more sensitive to global change than others? Approaches to this question have relied on comparing the fate of contrasting groups of species. However, if some ecological parameter affects the fate of species faced with global change, species response should vary smoothly along the parameter gradient. Thus, grouping species into few, often two, discrete classes weakens the approach. Using data from the common breeding bird survey in France – a large set of species with much variability with respect to the variables considered – we show that a quantitative measure of habitat specialization and of latitudinal distribution both predict recent 13 year trends of population abundance among 77 terrestrial species: the more northerly distributed and the more specialized a species is, the sharper its decline. On the other hand, neither hunting status, migrating strategy nor body mass predicted population growth rate variation among common bird species. Overall, these results are qualitatively very similar to the equivalent relationships found among the British butterfly populations. This constitutes additional evidence that biodiversity in Western Europe is under the double negative influence of climate change and land use change.  相似文献   

15.
Recent declines of many European bird species have been linked with various environmental changes, especially land-use change and climate change. Since the intensity of these environmental changes varies among different countries, we can expect geographic variation in bird population trends. Here, we compared the population trends of bird species among neighbouring countries within central Europe (Czech Republic, Denmark, Germany, Switzerland) between 1990 and 2016 and examined trait-associations with population trends at both national and international scales. We found that Denmark had the highest proportion of declining species while Switzerland had the lowest. Species associated with farmland had negative trends, but the effect size tended to differ among countries. A preference for higher temperature was positively associated with population trends and its effect size was similar among countries. Species that were increasing across all four countries were associated with forest; while species that were decreasing across all countries were long-distance migrants or farmland birds. Our results suggest that land-use change tends to be a more regionally variable driver of common bird population trends than climate change in central Europe. For species declining across all countries, international action plans could provide a framework for more efficient conservation. However, farmland birds likely need both, coordinated international action (e.g. through a green agricultural policy) to tackle their widespread declines as well as regionally different approaches to address varying national effect trajectories.  相似文献   

16.
Aim Animal monitoring programmes have allowed analyses of population trends, most of which now comment on the possible effect of global climate change. However, the relationship between the interspecific variation in population trends and species traits, such as habitat preferences, niche breadth or distribution patterns, has received little attention, in spite of its usefulness in the construction of ecological generalizations. The objectives of this study were: (1) to determine whether there are characteristics shared among species with upwards or downwards trends, and (2) to assess whether population changes agree with what could be expected under global warming (a decrease in species typical of cooler environments). Location The Spanish part of the Iberian Peninsula (c. 500,000 km2) in the south‐western part of the Mediterranean Basin. Methods We modelled recent breeding population changes (1996–2004), in areas without apparent land use changes, for 57 common passerine birds with species‐specific ecological and distributional patterns as explanatory variables. Results One‐half of these species have shown a generalized pattern towards the increase of their populations, while only one‐tenth showed a significant decrease. One half (54%) of the interspecific variability in yearly population trends is explained considering species‐specific traits. Species showing more marked increases preferred wooded habitats, were habitat generalists and occupied warmer and wetter areas, while moderate decreases were found for open country habitats in drier areas. Main conclusions The coherent pattern in population trends we found disagrees with the proposed detrimental effect of global warming on bird populations of western Europe, which is expected to be more intense in bird species inhabiting cooler areas and habitats. Such a pattern suggests that factors other than the increase in temperature may be brought to discussions on global change as relevant components to explain recent changes in biodiversity.  相似文献   

17.
Long‐distance dispersal is a fundamental process in ecology and evolution but the factors that influence these movements remain poorly understood in most species. We used stable hydrogen isotopes to quantify the rate and direction of long‐distance immigration in a breeding population of American redstarts and to test whether the settlement decisions that result in long‐distance dispersal are driven by habitat saturation or by the phenology of breeding‐season resources. Our results provide evidence that both natal dispersal and breeding dispersal were influenced by the timing of breeding‐season phenology, with both age classes more likely to disperse north in years when the onset of breeding‐season phenology occurs earlier than normal. Yearlings were also more likely to disperse north following winters with poor habitat quality on their non‐breeding grounds, demonstrating that carry‐over effects from the non‐breeding season influence natal dispersal in this species. Collectively, these results are consistent with the hypothesis that American redstarts use the phenology of breeding season resources as a cue to select breeding sites. Our results suggest that long‐distance dispersal may allow individuals to rapidly respond to advancing phenology caused by global climate change, though their ability to do so may be constrained by long‐term decline in habitat quality predicted for their tropical non‐breeding grounds.  相似文献   

18.
Synchrony of woodland bird populations: the effect of landscape structure   总被引:3,自引:0,他引:3  
The influence of environmental stochasticity and dispersal in producing patterns in population synchrony was examined for 53 woods censused annually from 1990 to 1999 for nine resident bird species (wren Troglodytes troglodytes , dunnock Prunella modularis , robin Erithacus rubecula , blackbird Turdus merula , song thrush Turdus philomelos , long-tailed tit Aegithalos caudatus , blue tit Parus caeruleus , great tit Parus major , and chaffinch Fringilla coelebs ) and four migrant bird species (garden warbler Sylvia borin , blackcap Sylvia atricapilla , chiffchaff Phylloscopus collybita and willow warbler Phylloscopus trochilus ). Twelve species showed global synchrony of population counts due to regional population trends and widespread annual population fluctuations. There was a clear link between population fluctuations and winter weather for wren, and three other species showed their largest population declines after the coldest winters. Eight species showed a decline in synchrony with distance between woods, and there was evidence for dispersal causing this pattern in three species. Landscape structure affected patterns of synchrony in several species, with lower synchrony in landscapes with less woodland. For three species, this difference in synchrony across a landscape gradient of decreasing woodland cover accounted for the decline in synchrony over distance. Three species showed greater synchrony between woods with similar amounts of hedgerow in the surrounding landscape, suggesting that the surroundings of a wood influence the population dynamics of some species breeding in the wood. Habitat fragmentation can alter the processes contributing to population synchrony. Loss of woodland reduces the relative abundance of woodland bird species. The remaining patches of habitat are smaller, more isolated and are set in a more hostile landscape, all of which may disrupt dispersal between patches and alter the population dynamics within woods.  相似文献   

19.
Temperate species are projected to experience the greatest temperature increases across a range of modelled climate change scenarios, and climate warming has been linked to geographical range and population changes of individual species at such latitudes. However, beyond the multiple modelling approaches, we lack empirical evidence of contemporary climate change impacts on populations in broad taxonomic groups and at continental scales. Identifying reliable predictors of species resilience or susceptibility to climate warming is of critical importance in assessing potential risks to species, ecosystems and ecosystem services. Here we analysed long‐term trends of 110 common breeding birds across Europe (20 countries), to identify climate niche characteristics, adjusted to other environmental and life history traits, that predict large‐scale population changes accounting for phylogenetic relatedness among species. Beyond the now well‐documented decline of farmland specialists, we found that species with the lowest thermal maxima (as the mean spring and summer temperature of the hottest part of the breeding distribution in Europe) showed the sharpest declines between 1980 and 2005. Thermal maximum predicted the recent trends independently of other potential predictors. This study emphasizes the need to account for both land‐use and climate changes to assess the fate of species. Moreover, we highlight that thermal maximum appears as a reliable and simple predictor of the long‐term trends of such endothermic species facing climate change.  相似文献   

20.
1.  Migrant bird populations are declining and have been linked to anthropogenic climate change. The phenology mismatch hypothesis predicts that migrant birds, which experience a greater rate of warming in their breeding grounds compared to their wintering grounds, are more likely to be in decline, because their migration will occur later and they may then miss the early stages of the breeding season. Population trends will also be negatively correlated with distance, because the chances of phenology mismatch increase with number of staging sites.
2.  Population trends from the Palaearctic (1990–2000) and Nearctic (1980–2006) were collated for 193 spatially separate migrant bird populations, along with temperature trends for the wintering and breeding areas. An index of phenology mismatch was calculated as the difference between wintering and breeding temperature trends.
3.  In the Nearctic, phenology mismatch was correlated with population declines as predicted, but in the Palaearctic, distance was more important. This suggests that differential global climate change may be responsible for contributing to some migrant species' declines, but its effects may be more important in the Nearctic.
4.  Differences in geography and so average migration distance, migrant species composition and history of anthropogenic change in the two areas may account for the differences in the strength of the importance of phenology mismatch on migrant declines in the Nearctic and Palaearctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号