首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of protein kinase C-beta (PKC-beta) in apoptosis induced by tumor necrosis factor (TNF)-alpha and anti-Fas monoclonal antibody (mAb) in the human myeloid HL-60 leukemia cell line was studied by using its variant HL-525, which is deficient in PKC-beta. In contrast to the parental HL-60 cells, HL-525 is resistant to TNF-alpha-induced apoptosis but sensitive to anti-Fas mAb-induced apoptosis. Both cell types expressed similar levels of the TNF-receptor I, whereas the Fas receptor was detected only in HL-525 cells. Transfecting the HL-525 cells with an expression vector containing PKC-beta reestablished their susceptibility to TNF-alpha-induced apoptosis. The apoptotic effect of TNF-alpha in HL-60 and the transfectants was abrogated by fumonisin, an inhibitor of ceramide generation, and by the peptide Ac-YVAD-BoMK, an inhibitor of caspase-1 and -4. Supplementing HL-525 cells with exogenous ceramides bypassed the PKC-beta deficiency and induced apoptosis, which was also restrained by the caspase-1 and -4 inhibitor. The apoptotic effect of anti-Fas mAb in HL-525 cells was abrogated by the antioxidants N-acetylcysteine and glutathione and by the peptide z-DEVD-FMK, an inhibitor of caspase-3 and -7. We suggest that TNF-alpha-induced apoptosis involves PKC-beta and then ceramide and, in turn, caspase-1 and/or -4, whereas anti-Fas mAb-induced apoptosis utilizes reactive oxygen intermediates and, in turn, caspase-3 and/or -7.  相似文献   

2.
Saito K  Meyer K  Warner R  Basu A  Ray RB  Ray R 《Journal of virology》2006,80(9):4372-4379
We have previously shown that hepatitis C virus (HCV) core protein modulates multiple cellular processes, including those that inhibit tumor necrosis factor alpha (TNF-alpha)-mediated apoptosis. In this study, we have investigated the signaling mechanism for inhibition of TNF-alpha-mediated apoptosis in human hepatoma (HepG2) cells expressing core protein alone or in context with other HCV proteins. Activation of caspase-3 and the cleavage of DNA repair enzyme poly(ADP-ribose) polymerase were inhibited upon TNF-alpha exposure in HCV core protein-expressing HepG2 cells. In vivo protein-protein interaction studies displayed an association between TNF receptor 1 (TNFR1) and TNFR1-associated death domain protein (TRADD), suggesting that the core protein does not perturb this interaction. A coimmunoprecipitation assay also suggested that HCV core protein does not interfere with the TRADD-Fas-associated death domain protein (FADD)-procaspase-8 interaction. Further studies indicated that HCV core protein expression inhibits caspase-8 activation by sustaining the expression of cellular FLICE (FADD-like interleukin-1beta-converting enzyme)-like inhibitory protein (c-FLIP). Similar observations were also noted upon expression of core protein in context to other HCV proteins expressed from HCV full-length plasmid DNA or a replicon. A decrease in endogenous c-FLIP by specific small interfering RNA induced TNF-alpha-mediated apoptotic cell death and caspase-8 activation. Taken together, our results suggested that the TNF-alpha-induced apoptotic pathway is inhibited by a sustained c-FLIP expression associated with the expression of HCV core protein, which may play a role in HCV-mediated pathogenesis.  相似文献   

3.
4.
The conventional calpains, m- and micro-calpain, are suggested to be involved in apoptosis triggered by many different mechanisms. However, it has not been possible to definitively associate calpain function with apoptosis, largely because of the incomplete selectivity of the cell permeable calpain inhibitors used in previous studies. In the present study, Chinese hamster ovary (CHO) cell lines overexpressing micro-calpain or the highly specific calpain inhibitor protein, calpastatin, have been utilized to explore apoptosis signals that are influenced by calpain content. This approach allows unambiguous alteration of calpain activity in cells. Serum depletion, treatment with the endoplasmic reticulum (ER) calcium ATPase inhibitor thapsigargin, and treatment with calcium ionophore A23187 produced apoptosis in CHO cells, which was increased in calpain overexpressing cells and decreased by induced expression of calpastatin. Inhibition of calpain activity protected beta-spectrin, but not alpha-spectrin, from proteolysis. The calpains seemed not to be involved in apoptosis triggered by a number of other treatments. Calpain protected against TNF-alpha induced apoptosis. In contrast to previous studies, we found no evidence that calpains proteolyze I kappa B-alpha in TNF-alpha-stimulated cells. These studies indicate that the conventional calpains participate in some, but not all, apoptotic signaling mechanisms. In most cases, they contributed to apoptosis, but in at least one case, they were protective.  相似文献   

5.
Sindbis virus (SV) is an alphavirus used as a model for studying the pathogenesis of viral encephalitis. In this study we examined the effects and the mechanisms involved in the apoptosis induced by SV in PC-12 cells, and the role of a vFLIP in this process. Infection of PC-12 cells with a neurovirulent strain of SV, SVNI, induced cell apoptosis. Overexpression of vFLIP encoded by the HHV-8 or treatment with a caspase-8 inhibitor inhibited cell apoptosis. SVNI induced an increase in the expression of tumor necrosis factor alpha (TNF-alpha), and pre-treatment of the cells with an anti-TNF-alpha blocking antibody or with soluble TNF-alpha receptor abrogated the apoptotic effect of SVNI. Moreover, TNF-alpha R1 knockout mice were more resistant to the cytopathic effects of the virus as compared to control animals. Our results indicate that the apoptosis induced by SVNI is mediated by activation of caspase-8, and that TNF-alpha plays an important role in the apoptotic response.  相似文献   

6.
The adenovirus E1B 19K gene product is an inhibitor of apoptosis induced by tumor necrosis factor-alpha (TNF-alpha) during viral infection. We report that E1B 19K inhibited neither caspase-8 activation nor caspase-8-dependent Bid cleavage by TNF-alpha. Rather, TNF-alpha induced a tBid-dependent conformational change in Bax that allowed an interaction between E1B 19K and conformationally altered Bax, which caused inhibition of cytochrome c release and caspase-9 activation. E1B 19K expression interrupted caspase-3 processing, permitting cleavage to remove the p12 subunit but not the prodomain consistent with caspase-8 and not caspase-9 enzymatic activity. Thus, E1B 19K blocks TNF-alpha-mediated death signaling by inhibiting a specific form of Bax that interrupts caspase activation downstream of caspase-8 and upstream of caspase-9.  相似文献   

7.
A cytotoxic lectin (Viscum album L. coloratum agglutinin, VCA) from Korean mistletoe was isolated by affinity chromatography on Sepharose 4B immobilized with asialofetuin. In HL-60 cells, addition of VCA resulted in a dose- and time-dependent growth suppression, morphological changes of apoptotic nuclei, and DNA fragmentation characteristics of apoptosis. To investigate how caspase-3 activation during VCA-induced apoptosis induces cleavages of PARP, the expression of PARP and the pattern of caspase-3 activation in HL-60 cells were investigated. The native and processed PARP forms typically seen in apoptotic cells were observed, and a decrease in expression of the 32-kDa form of caspase-3 in a dose-dependent manner was observed. The VCA-induced apoptosis was significantly inhibited by a caspase-3 specific inhibitor, z-DEVD-FMK, and the PARP processing and caspase-3 activation were also inhibited by the inhibitor. A possible involvement of cell cycle arrest in VCA-induced apoptosis was investigated by flow cytometry and the results suggested that the apoptotic effect of VCA is not involved in the induction of cell cycle arrest.  相似文献   

8.
9.
Accumulation of misfolded proteins and alterations in Ca2+ homeostasis in the endoplasmic reticulum (ER) causes ER stress and leads to cell death. However, the signal-transducing events that connect ER stress to cell death pathways are incompletely understood. To discern the pathway by which ER stress-induced cell death proceeds, we performed studies on Apaf-1(-/-) (null) fibroblasts that are known to be relatively resistant to apoptotic insults that induce the intrinsic apoptotic pathway. While these cells were resistant to cell death initiated by proapoptotic stimuli such as tamoxifen, they were susceptible to apoptosis induced by thapsigargin and brefeldin-A, both of which induce ER stress. This pathway was inhibited by catalytic mutants of caspase-12 and caspase-9 and by a peptide inhibitor of caspase-9 but not by caspase-8 inhibitors. Cleavage of caspases and poly(ADP-ribose) polymerase was observed in cell-free extracts lacking cytochrome c that were isolated from thapsigargin or brefeldin-treated cells. To define the molecular requirements for this Apaf-1 and cytochrome c-independent apoptosis pathway further, we developed a cell-free system of ER stress-induced apoptosis; the addition of microsomes prepared from ER stress-induced cells to a normal cell extract lacking mitochondria or cytochrome c resulted in processing of caspases. Immunodepletion experiments suggested that caspase-12 was one of the microsomal components required to activate downstream caspases. Thus, ER stress-induced programmed cell death defines a novel, mitochondrial and Apaf-1-independent, intrinsic apoptotic pathway.  相似文献   

10.
Beta-lapachone, an o-naphthoquinone, induces various carcinoma cells to undergo apoptosis, but the mechanism is poorly understood. In the present study, we found that the beta-lapachone-induced apoptosis of DU145 human prostate carcinoma cells was associated with endoplasmic reticulum (ER) stress, as shown by increased intracellular calcium levels and induction of GRP-78 and GADD-153 proteins, suggesting that the endoplasmic reticulum is a target of beta-lapachone. Beta-Lapachone-induced DU145 cell apoptosis was dose-dependent and accompanied by cleavage of procaspase-12 and phosphorylation of p38, ERK, and JNK, followed by activation of the executioner caspases, caspase-7 and calpain. However, pretreatment with the general caspase inhibitor, z-VAD-FMK, or calpain inhibitors, including ALLM or ALLN, failed to prevent beta-lapachone-induced apoptotic cell death. Blocking the enzyme activity of NQO1 with dicoumarol, a known NQO1 inhibitor, or preventing an increase in intracellular calcium levels using BAPTA-AM, an intracellular calcium chelator, substantially inhibited MAPK phosphorylation, abolished the activation of calpain, caspase-12 and caspase-7, and provided significant protection of beta-lapachone-treated cells. These findings show that beta-lapachone-induced ER stress and MAP kinase phosphorylation is a novel signaling pathway underlying the molecular mechanism of the anticancer effect of beta-lapachone.  相似文献   

11.
Co-activation and cross-talk of different apoptotic pathways have been described in several systems however, the differential contributions of the different executors have not been well characterized. Here we report the co-translocation to the nucleus of caspase-12 and AIF in response to two endoplasmic reticulum (ER) stresses: protein misfolding and disruption of calcium homeostasis. As seen by treatment with pan-caspase inhibitor and calpain inhibitors, apoptosis is not mediated by executor caspases but by calpains. By reduction of AIF or caspase-12 expression we unraveled that AIF primarily controls apoptosis caused by changes in calcium homeostasis while caspase-12 has a main role in programmed cell death induced by protein misfolding. Nevertheless, the two apoptotic factors appear to reinforce each other during the apoptotic process, confirming that while the first response primarily involves one organelle, mitochondria and ER can influence each other in the apoptotic event.  相似文献   

12.
13.
14.
The sphingomyelin metabolites ceramide and sphingosine are mediators of cell death induced by gamma-irradiation. We studied the production of ceramide and the effects of exogenous ceramide on apoptosis in LNCaP prostate cancer cells that are highly resistant to gamma-irradiation-induced cell death. LNCaP cells can be sensitized to gamma-irradiation by tumor necrosis factor alpha (TNF-alpha) and, to a lesser degree, by the agonistic FAS antibody CH-11. TNF-alpha activated intrinsic and extrinsic apoptosis pathways and increased ceramide and sphingosine levels in irradiated LNCaP cells. CH-11 activated only the extrinsic apoptosis pathways and had a negligible effect on ceramide and sphingosine levels in irradiated LNCaP cells. Exogenous ceramide and bacterial sphingomyelinase sensitized LNCaP cells to radiation-induced apoptosis and had a synergistic effect on cell death after irradiation with TNF-alpha, but not with CH-11. Cell death effects after exposure to ceramide and irradiation were blocked by the serine protease inhibitor TLCK (Na-p-tosyl-L-lysine-chloromethylketone), but not by the caspase inhibitor z-VAD (2-val-Ala-Asp(oMe)-CH(2)F). During LNCaP cell apoptosis induced by exogenous ceramide, we observed activation of caspase-9, but not caspases-8, -3, or -7. The effect of ceramide occurred largely via the intrinsic mitochondrial apoptosis pathway and enhanced TNF-alpha, but not CH-11 effects on irradiated cells. The data show that ceramide enhanced activation of the intrinsic apoptotic pathway and enhanced cell death induced by TNF-alpha with or without gamma-irradiation. TNF-alpha and gamma-irradiation elevated levels of endogenous ceramide and activated the intrinsic cell death pathway.  相似文献   

15.
《Free radical research》2013,47(5):432-446
Abstract

Several studies have shown that oxidative stress induces apoptosis in many cellular systems including pancreatic acinar cells. However, the exact molecular mechanisms leading to apoptosis remain partially understood. This study aimed to investigate the role of the cytosolic cysteine protease calpain in H2O2-induced apoptosis in pancreatic AR42J cells. Apoptosis was evaluated using flow cytometric analysis of sub-G1 DNA populations, electron-microscopic analysis, caspase-3-specific αII-spectrin breakdown, and measuring the proteolytic activities of the initiator caspase-12 and caspase-8, and the executioner caspase-3. H2O2 induced an increase in the calpain proteolytic activity immediately after starting the experiments that tended to return to a nearly normal level after 8 h and could be attributed to m-calpain. Whereas no caspase-12, caspase-8 and caspase-3 activations could be detected within the first 0.5 h, significantly increased proteolytic activities were observed after 8 h compared with the control. At the same time, the cells showed first ultrastructural hallmarks of apoptosis and a decreased viability. In addition, αII-spectrin fragmentation was identified using immunoblotting that could be attributed to both calpain and caspase-3. Calpain inhibition reduced the activities of caspase-12, caspase-8, and caspase-3 leading to a decrease in the number of apoptotic cells. Immunoblotting analyses of caspase-12 and caspase-8 indicate that calpain may be involved in the activation process of both proteases. The results suggest that H2O2-induced apoptosis of AR42J cells requires activation of m-calpain initiating the endoplasmic reticulum stress-induced caspase-12 pathway and a caspase-8-dependent pathway. The findings also suggest that calpain may be involved in the execution phase of apoptosis.  相似文献   

16.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

17.
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.  相似文献   

18.
Li J  Xia X  Ke Y  Nie H  Smith MA  Zhu X 《Biochimica et biophysica acta》2007,1770(8):1169-1180
Trichosanthin (TCS), a traditional Chinese medicine, exerts antitumor activities by inducing apoptosis in many different tumor cell lines. However, the mechanisms remain obscure. The present study focused on various caspase pathways that may be involved in TCS-induced apoptosis in leukemia HL-60 cells. Key caspases in both intrinsic and extrinsic pathways including caspase-8, -9 and -3 were activated upon TCS treatment. Additionally, TCS treatment induced upregulation of BiP and CHOP and also activated caspase-4, which for the first time strongly supported the involvement of endoplasmic reticulum stress pathway in TCS-induced apoptosis. Interestingly, although caspase-8 was activated, Fas/Fas ligand pathway was not involved as evidenced by a lack of induction of Fas or Fas ligand and a lack of inhibitory effect of anti-Fas blocking antibody on TCS-induced apoptosis. Instead, caspase-8 was activated in a caspase-9 and -4 dependent manner. The involvement of mitochondria was demonstrated by the reduction of mitochondrial membrane potential and release of cytochrome c and Smac besides the activation of caspase-9. Further investigation confirmed that caspase-3 was the major executioner caspase downstream to caspase-9, -4 and -8. Taken together, our results suggested that TCS-induced apoptosis in HL-60 cells was mainly mediated by mitochondrial and ER stress signaling pathways via caspase-3.  相似文献   

19.
Cross-talk between calpain and caspase proteolytic systems has complicated efforts to determine their distinct roles in apoptotic cell death. This study examined the effect of overexpressing calpastatin, the specific endogenous calpain inhibitor, on the activity of the two proteolytic systems following an apoptotic stimulus. Human SH-SY5Y neuroblastoma cells were stably transfected with full-length human calpastatin cDNA resulting in 20-fold overexpression based on Western blot and 5-fold greater calpain inhibitory activity in cell extracts. Wild type and calpastatin overexpressing (CST1) cells were neuronally differentiated and apoptosis-induced with staurosporine (0.1-1.0 microm). Calpastatin overexpression decreased calpain activation, increased caspase-3-like activity, and accelerated the appearance of apoptotic nuclear morphology. Following 0.1-0.2 microm staurosporine, plasma membrane integrity based on calcein-acetoxymethyl fluorescence was significantly greater at 24 h in differentiated CST1 compared with differentiated wild type cells. However, this protective effect was lost at higher staurosporine doses (0.5-1.0 microm), which resulted in pronounced caspase-mediated degradation of the overexpressed calpastatin. These results suggest a dual role for calpains during neuronal apoptosis. In the early execution phase, calpain down-regulates caspase-3-like activity and slows progression of apoptotic nuclear morphology. Subsequent calpain activity, facilitated by caspase-mediated degradation of calpastatin, contributes to plasma membrane disruption and secondary necrosis.  相似文献   

20.
Treatment of 26L cells, a subclone obtained from U937 cells, with TNF-alpha or DNA-damaging agents such as teniposide (VM26) and camptothecin (CPT) induced morphologically and biochemically typical apoptotic changes, including the activation of procaspase-3. The cells persistently infected with HIV-1 (26L/HIV), however, showed a marked resistance to VM26 and CPT, whereas they hardly lost the sensitivity to TNF-alpha. TNF-alpha-induced apoptosis of 26L/HIV cells proceeded without the increase in caspase-3 activity, indicating that signaling for apoptosis in the infected cells proceeded through an alternative caspase-3-independent pathway which could respond to TNF-alpha but not to VM26 and CPT. The evidence that p-toluenesulfonyl-l-lysine chloromethyl ketone (a trypsin-like serine protease inhibitor) blocked VM26- and CPT-induced apoptotic changes but not TNF-alpha-induced apoptosis also supported the existence of the alternative TNF-alpha-inducible pathway. The results also suggest that a TLCK-sensitive protease is involved upstream of the procaspase-3 activation process and that the protease is essential for the progress of VM26- and CPT-induced apoptosis. The similar effect of HIV-1-productive infection on the apoptosis induced by the DNA-damaging agents was also confirmed by utilizing U1 cells, which are latently HIV-1-infected U937 cells. The cells became resistant to these agents after induction of the viral production by pretreatment with PMA. These results suggest that persistent HIV-1 infection blocks an apoptotic pathway triggered by DNA damaging agents through the inhibition of the procaspase-3 activation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号