首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Stabilization of the hypoxia-inducible factor-1 (HIF-1) protein is essential for its role as a regulator of gene expression under low oxygen conditions. Here, employing a novel hydroxylation-specific antibody, we directly show that proline 564 of HIF-1alpha and proline 531 of HIF-2alpha are hydroxylated under normoxia. Importantly, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 hydroxylation is diminished with the treatment of hypoxia, cobalt chloride, desferrioxamine, or dimethyloxalyglycine, regardless of the E3 ubiquitin ligase activity of the von Hippel-Lindau (VHL) tumor suppressor gene. Furthermore, in VHL-deficient cells, HIF-1alpha Pro-564 and HIF-2alpha Pro-531 had detectable amounts of hydroxylation following transition to hypoxia, indicating that the post-translational modification is not reversible. The introduction of v-Src or RasV12 oncogenes resulted in the stabilization of normoxic HIF-1alpha and the loss of hydroxylated Pro-564, demonstrating that oncogene-induced stabilization of HIF-1alpha is signaled through the inhibition of prolyl hydroxylation. Conversely, a constitutively active Akt oncogene stabilized HIF-1alpha under normoxia independently of prolyl hydroxylation, suggesting an alternative mechanism for HIF-1alpha stabilization. Thus, these results indicate distinct pathways for HIF-1alpha stabilization by different oncogenes. More importantly, these findings link oncogenesis with normoxic HIF-1alpha expression through prolyl hydroxylation.  相似文献   

3.
4.
The present study investigated the cellular mechanism underlying the degradation of heme oxygenase-1 (HO-1), an endoplasmic reticulum (ER)-anchored protein. The turnover of HO-1 induced in vascular smooth muscle cells (VSMCs) was significantly attenuated by proteasome inhibitors, suggesting the involvement of a proteasome-mediated pathway. High molecular weight ubiquitin conjugates were co-immunoprecipitated with HO-1 from VSMCs after proteasome inhibition, and HO-1 ubiquitination was confirmed in HEK293 cells overexpressing His-tagged HO-1 and HA-tagged ubiquitin. Endogenous p97, an ATPase, and Ufd1, both implicated as essential components in the ER-associated degradation pathway (ERAD), were co-eluted with His-tagged HO-1 from metal affinity resin. Knockdown of either p97 or Ufd1 in HEK293 cells using specific siRNA significantly prolonged the half-life of endogenously induced HO-1 and slowed the degradation of ubiquitinated HO-1. HO-1 ubiquitination in HEK293 cells was enhanced by zinc chloride, but suppressed with a zinc chelator (N,N,N',N'-tetrakis(2-pyridylmethyl)ethyl-enediamine), suggesting the involvement of a RING-E3 ligase in this process. Collectively, these data indicate that HO-1 protein turnover is regulated by the ubiquitin-proteasome system through the ERAD pathway.  相似文献   

5.
Eukaryotic cells have quality control systems that eliminate nonfunctional rRNAs with deleterious mutations (nonfunctional rRNA decay, NRD). We have previously reported that 25S NRD requires an E3 ubiquitin ligase complex, which is involved in ribosomal ubiquitination. However, the degradation process of nonfunctional ribosomes has remained unknown. Here, using genetic screening, we identified two ubiquitin-binding complexes, the Cdc48-Npl4-Ufd1 complex (Cdc48 complex) and the proteasome, as the factors involved in 25S NRD. We show that the nonfunctional 60S subunit is dissociated from the 40S subunit in a Cdc48 complex-dependent manner, before it is attacked by the proteasome. When we examined the nonfunctional 60S subunits that accumulated under proteasome-depleted conditions, the majority of mutant 25S rRNAs retained their full length at a single-nucleotide resolution. This indicates that the proteasome is an essential factor triggering rRNA degradation. We further showed that ribosomal ubiquitination can be stimulated solely by the suppression of the proteasome, suggesting that ubiquitin-proteasome-dependent RNA degradation occurs in broader situations, including in general rRNA turnover.  相似文献   

6.
Recurrent infections with high-risk human papillomaviruses (HPVs) are associated with human cervical cancers. All HPV-associated cancer tissues express the viral oncoproteins E6 and E7, which stimulate cell growth. The expression of E7 is crucial for both the initiation and the maintenance of HPV-associated cancer. Recent studies showed that the level of E7 in cancer cells is regulated by ubiquitin-dependent proteolysis through the 26S proteasome. In this study, we characterized the enzymes involved in the ubiquitin-dependent proteolysis of E7. We show that UbcH7, an E2 ubiquitin-conjugating enzyme, is specifically involved in the ubiquitination of E7. Furthermore, we show that E7 interacts with the SCF (Skp-Cullin-F box) ubiquitin ligase complex containing Cullin 1 (Cul1) and Skp2 and can be ubiquitinated by the Cul1-containing ubiquitin ligase in vitro. Coimmunoprecipitation analyses revealed that E7 interacts with Skp2 and Cul1 in vivo. Finally, the half-life of E7 was found to be significantly longer in Skp2(-/-) mouse embryo fibroblasts (MEFs) than in wild-type MEFs. Taken together, these results suggest that the Cul1- and Skp2-containing ubiquitin ligase plays a role in the ubiquitination and proteolysis of E7. In HPV type 16-containing cervical carcinoma cell line Caski, E7 localizes to both the cytoplasm and the nucleus. Brief treatment of Caski cells with MG132 (a proteasome inhibitor) causes the accumulation of E7 in discrete nuclear bodies. These nuclear bodies are detergent insoluble and contain polyubiquitinated E7. We suggest that E7 relocates to specific nuclear bodies for proteolysis in HPV-containing epithelial cells.  相似文献   

7.
Nie L  Xu M  Vladimirova A  Sun XH 《The EMBO journal》2003,22(21):5780-5792
Notch signals are important for lymphocyte development but downstream events that follow Notch signaling are not well understood. Here, we report that signaling through Notch modulates the turnover of E2A proteins including E12 and E47, which are basic helix-loop-helix proteins crucial for B and T lymphocyte development. Notch-induced degradation requires phosphorylation of E47 by p42/p44 MAP kinases. Expression of the intracellular domain of Notch1 (N1-IC) enhances the association of E47 with the SCF(Skp2) E3 ubiquitin ligase and ubiquitination of E47, followed by proteasome-mediated degradation. Furthermore, N1-IC induces E2A degradation in B and T cells in the presence of activated MAP kinases. Activation of endogenous Notch receptors by treatment of splenocytes with anti-IgM or anti-CD3 plus anti-CD28 also leads to E2A degradation, which is blocked by the inhibitors of Notch activation or proteasome function. Notch-induced E2A degradation depends on the function of its downstream effector, RBP-Jkappa, probably to activate target genes involved in the ubiquitination of E2A proteins. Thus we propose that Notch regulates lymphocyte differentiation by controlling E2A protein turnover.  相似文献   

8.
9.
The suppressor of cytokine signaling (SOCS) proteins are thought to exert their function through the recruitment of interacting-proteins to the ubiquitin/proteasome degradation pathway. All SOCS proteins bind an Elongin BC E3 ubiquitin ligase complex through the common Socs-box. Here, we show that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1), another E3 ubiquitin ligase, interacts with SOCS6. The Ubl domain of HOIL-1 and the SH2 and Socs-box domains of SOCS6 are required for the interaction. HOIL-1 expression stabilizes SOCS6 and induces the ubiquitination and degradation of proteins associated with SOCS6. These data suggest that SOCS proteins may interact with different E3 ubiquitin ligases in addition to a common Elongin BC E3 complex.  相似文献   

10.
EL5, a rice gene responsive to N-acetylchitooligosaccharide elicitor, encodes a RING-H2 finger protein with structural features common to the plant-specific ATL family. We show that the fusion protein of EL5 with maltose binding protein (MBP) was polyubiquitinated by incubation with ubiquitin, ubiquitin-activating enzyme (E1), and the Ubc4/5 subfamily of the ubiquitin-conjugating enzyme (E2). EL5 possesses the activity to catalyse the transfer of ubiquitin to the MBP moiety, and the RING-H2 finger motif of EL5 is necessary for this activity. Thus, we concluded that EL5 represents a ubiquitin ligase (E3). We also show that two rice E2s (OsUBC5a, OsUBC5b) of the Ubc4/5 subfamily function as E2 which catalyses EL5-mediated ubiquitination, and OsUBC5b was induced by elicitor, as well as EL5. These results strongly suggest that EL5 and OsUBC5b have roles in plant defense response through the turnover of protein(s) via the ubiquitin/proteasome system.  相似文献   

11.
Translation initiation factor 4E (eIF4E) is a cytoplasmic cap-binding protein that is required for cap-dependent translation initiation. Here, we have shown that eIF4E is ubiquitinated primarily at Lys-159 and incubation of cells with a proteasome inhibitor leads to increased eIF4E levels, suggesting the proteasome-dependent proteolysis of ubiquitinated eIF4E. Ubiquitinated eIF4E retained its cap binding ability, whereas eIF4E phosphorylation and eIF4G binding were reduced by ubiquitination. The W73A mutant of eIF4E exhibited enhanced ubiquitination/degradation, and 4E-BP overexpression protected eIF4E from ubiquitination/degradation. Because heat shock or the expression of the carboxyl terminus of heat shock cognate protein 70-interacting protein (Chip) dramatically increased eIF4E ubiquitination, Chip may be at least one ubiquitin E3 ligase responsible for eIF4E ubiquitination.  相似文献   

12.
13.
Ubiquitination regulates a host of cellular processes by labeling proteins for degradation, but also by functioning as a regulatory, nonproteolytic posttranslational modification. Proteome-wide strategies to monitor changes in ubiquitination profiles are important to obtain insight into the various cellular functions of ubiquitination. Here we describe generation of stable cell lines expressing a tandem hexahistidine-biotin tag (HB-tag) fused to ubiquitin for two-step purification of the ubiquitinated proteome under fully denaturing conditions. Using this approach we identified 669 ubiquitinated proteins from HeLa cells, including 44 precise ubiquitin attachment sites on substrates and all seven possible ubiquitin chain-linkage types. To probe the dynamics of ubiquitination in response to perturbation of the ubiquitin/proteasome pathway, we combined ubiquitin profiling with quantitative mass spectrometry using the stable isotope labeling with amino acids in cell culture (SILAC) strategy. We compared untreated cells and cells treated with the proteasome inhibitor MG132 to identify ubiquitinated proteins that are targeted to the proteasome for degradation. A number of proteasome substrates were identified. In addition, the quantitative approach allowed us to compare proteasome targeting by different ubiquitin chain topologies in vivo. The tools and strategies described here can be applied to detect changes in ubiquitination dynamics in response to various changes in growth conditions and cellular stress and will contribute to our understanding of the ubiquitin/proteasome system.  相似文献   

14.
Parkin, the most commonly mutated gene in familial Parkinson's disease, encodes an E3 ubiquitin ligase. A number of candidate substrates have been identified for parkin ubiquitin ligase action including CDCrel-1, o-glycosylated alpha-synuclein, Pael-R, and synphilin-1. We now show that parkin promotes the ubiquitination and degradation of an expanded polyglutamine protein. Overexpression of parkin reduces aggregation and cytotoxicity of an expanded polyglutamine ataxin-3 fragment. Using a cellular proteasome indicator system based on a destabilized form of green fluorescent protein, we demonstrate that parkin reduces proteasome impairment and caspase-12 activation induced by an expanded polyglutamine protein. Parkin forms a complex with the expanded polyglutamine protein, heat shock protein 70 (Hsp70) and the proteasome, which may be important for the elimination of the expanded polyglutamine protein. Hsp70 enhances parkin binding and ubiquitination of expanded polyglutamine protein in vitro suggesting that Hsp70 may help to recruit misfolded proteins as substrates for parkin E3 ubiquitin ligase activity. We speculate that parkin may function to relieve endoplasmic reticulum stress by preserving proteasome activity in the presence of misfolded proteins. Loss of parkin function and the resulting proteasomal impairment may contribute to the accumulation of toxic aberrant proteins in neurodegenerative diseases including Parkinson's disease.  相似文献   

15.
16.
Terf/TRIM17 is a member of the TRIM family of proteins, which is characterized by the RING finger, B-box, and coiled-coil domains. In the present study, we found that terf interacts with TRIM44. Terf underwent ubiquitination in vitro in the presence of the E2 enzyme UbcH6; this suggests that terf exhibits E3 ubiquitin ligase activity. It was also found that terf was conjugated with polyubiquitin chains and stabilized by the proteasome inhibitor in mammalian cells; this suggested that terf rendered itself susceptible to proteasomal degradation through polyubiquitination. We also found that TRIM44 inhibited ubiquitination of terf, and thus stabilized the protein. The N-terminal region of TRIM44 contains a zinc-finger domain found in ubiquitin hydrolases (ZF UBP) and ubiquitin specific proteases (USPs). Thus, we proposed that TRIM44 may function as a new class of the “USP-like-TRIM” which regulates the activity of associated TRIM proteins.  相似文献   

17.
The tumor suppressor p53 has evolved a MDM2-dependent feedback loop that promotes p53 protein degradation through the ubiquitin–proteasome system. MDM2 is an E3-RING containing ubiquitin ligase that catalyzes p53 ubiquitination by a dual-site mechanism requiring ligand occupation of its N-terminal hydrophobic pocket, which then stabilizes MDM2 binding to the ubiquitination signal in the DNA-binding domain of p53. A unique pseudo-substrate motif or “lid” in MDM2 is adjacent to its N-terminal hydrophobic pocket, and we have evaluated the effects of the flexible lid on the dual-site ubiquitination reaction mechanism catalyzed by MDM2. Deletion of this pseudo-substrate motif promotes MDM2 protein thermoinstability, indicating that the site can function as a positive regulatory element. Phospho-mimetic mutation in the pseudo-substrate motif at codon 17 (MDM2S17D) stabilizes the binding of MDM2 towards two distinct peptide docking sites within the p53 tetramer and enhances p53 ubiquitination. Molecular modeling orientates the phospho-mimetic pseudo-substrate motif in equilibrium over a charged surface patch on the MDM2 at Arg97/Lys98, and mutation of these residues to the MDM4 equivalent reverses the activating effect of the phospho-mimetic mutation on MDM2 function. These data highlight the ability of the pseudo-substrate motif to regulate the allosteric interaction between the N-terminal hydrophobic pocket of MDM2 and its central acidic domain, which stimulates the E3 ubiquitin ligase function of MDM2. This model of MDM2 regulation implicates an as yet undefined lid-kinase as a component of pro-oncogenic pathways that stimulate the E3 ubiquitin ligase function of MDM2 in cells.  相似文献   

18.
This review covers the observations that erythrocyte spectrin has a E2 ubiquitin conjugating enzymatic activity that allows it to transfer ubiquitin to a target site in the alpha-spectrin repeats 20/21. The position of this ubiquitination site suggests that ubiquitination may regulate alpha beta spectrin heterodimer nucleation, spectrin-4.1-actin ternary complex formation, and adducin stimulated spectrin-actin attachment in the mature erythrocyte. In sickle cells, which contain altered redox status (high GSSG/GSH ratio), ubiquitin attachment to the E2 and target sites in alpha-spectrin is greatly diminished. We propose that this attenuated ubiquitination of spectrin may be due to glutathiolation of the E2 active site cysteine leading to diminished ubiquitin-spectrin adduct and conjugate formation. Furthermore we propose that lack of ubiquitin-spectrin complex formation leads to dysregulation of the membrane skeleton in mature SS erythrocytes and may diminish spectrin turnover in SS erythropoietic cells via the ubiquitin proteasome machinery. In hippocampal neurons, spectrin is the major ubiquitinated protein and a component of the cytoplasmic ubiquitinated inclusions observed in Alzheimer's and Parkinson's diseases. The two primary neuronal spectrin isoforms: alpha SpI Sigma*/beta SpI Sigma 2 and alpha SpII Sigma 1/beta SpII Sigma 1 are both ubiquitinated. Future work will resolve whether neuronal spectrins also contain E2-ubiquitin conjugating activity and the molecular basis for formation of ubiquitinated inclusions in neurological disorders.  相似文献   

19.
Spermatogenesis is a complicated and highly ordered process which begins with the differentiation of spermatogonial stem cells and ends with the formation of mature sperm. After meiosis, several morphological changes occur during spermatogenesis. During spermatogenesis, many proteins and organelles are degraded, and the ubiquitin–proteasome pathway (UPP) plays a key role in the process which facilitates the formation of condensed sperm. UPP contains various indispensable components: ubiquitin, ubiquitin-activating enzyme E1, ubiquitin-conjugating enzyme E2, ubiquitin ligase enzyme E3 and proteasomes. At some key stages of spermatogenesis, such as meiosis, acrosome biogenesis, and spermatozoa maturation, the ubiquitin-related components (including deubiquitination enzymes) exert positive and active functions. Generally speaking, deficient UPP will block spermatogenesis which may induce infertility at various degrees. Although ubiquitination during spermatogenesis has been widely investigated, further detailed aspects such as the mechanism of ubiquitination during the formation of midpiece and acrosome morphogenesis still remains unknown. The present review will overview current progress on ubiquitination during spermatogenesis, and will provide some suggestions for future studies on the functions of UPP components during spermatogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号