共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
M J Bawden I A Borthwick H M Healy C P Morris B K May W H Elliott 《Nucleic acids research》1987,15(20):8563
3.
The evolution of 5-aminolevulinate synthase (ALS) was studied by acquiring sequence data and generating phylogenetic trees. Gene sequences were already available for a variety of vertebrates (which have both a housekeeping and an erythroid form of the gene), fungi, alpha-proteobacteria, and one protist and one protostome. In order to generate representative trees, ALS sequence data were acquired from various deuterostomes and protostomes. The species and tissues selected for study were beluga whale liver, hagfish blood, sea urchin gonadal tissue, cuttlefish hepatopancreas, horseshoe crab hepatopancreas, and bloodworm blood. The new sequences and those previously published were examined for the presence of heme-regulatory motifs (HRMs) and iron-responsive elements (IREs). The HRMs are present in almost all eukaryotic species, which suggests their fundamental role in the regulation of ALS. The IREs are present in all vertebrate erythroid forms of ALS, which indicates that in those animals, expression of the erythroid form of the enzyme and, hence, hemoglobin production can be influenced by the intracellular content of iron. The new sequences were aligned with previously reported ALS sequences, and phylogenetic analyses were performed. The resulting trees provided evidence regarding the timing of the gene duplication event that led to the two forms of the ALS gene in vertebrates. It appears that the housekeeping and erythroid forms of ALS probably arose before the divergence of hagfish from the deuterostome line leading to the vertebrates. The data also add to the evidence indicating that alpha-proteobacteria are the nearest contemporary relatives of mitochondria. 相似文献
4.
Different cytochromes P450 are involved in steroid biosynthesis. These cytochromes have heme as the prosthetic group. We previously reported that ACTH, an activator of glucocorticoid biosynthesis in adrenal, requires heme biosynthesis for a maximal response. In the present study, we investigated the effect of ACTH, and the effect of two activators of the adrenal mineralocorticoid synthesis, endothelin-1 and low sodium diet on 5-aminolevulinate-synthase (ALA-s) mRNA. ALA-s is the rate-limiting enzyme in heme biosynthesis. It was found that infusion of rats with ACTH for 1 h caused an increase of adrenal ALA-s mRNA and activity accompanied by an increase in plasma corticosterone. CYP21, a cytochrome involved in the synthesis of both corticosterone and aldosterone, was not modified at the RNA level in adrenal glands by 1 h of ACTH infusion. Consistently, infusion of endothelin-1 for 1 h increased ALA-s mRNA and aldosterone content in adrenal gland without modifying CYP21 mRNA levels. To study if ALA-s is also regulated by the main physiological stimuli that increase adrenal mineralocorticoid secretion, we fed rats with low salt diet for 2 or 15 days. Low salt diet treatment increased adrenal gland ALA-s mRNA levels. On the other hand, the rapid stimulation of ALA-s mRNA by ACTH which acts through cyclic AMP was confirmed in H295R human adrenocortical cells, the only human adrenal cell line that has a steroid secretion pattern and regulation similar to primary cultures of adrenal cells. Our findings suggest that the acute activation of adrenal steroidogenic cytochromes by trophic hormones involves an increase in heme biosynthesis which will favor the production of active cytochromes. 相似文献
5.
D J Maguire A R Day I A Borthwick G Srivastava P L Wigley B K May W H Elliott 《Nucleic acids research》1986,14(3):1379-1391
6.
A truncated form of the yeast mitochondrial 5-aminolevulinate (ALA) synthase was constructed by deletion of the first 75 amino acid residues of its precursor form. This truncated ALA synthase which lost its entire presequence and 40 residues of the mature part possesses a new amino terminus quite different from a typical mitochondrial presequence. This modified protein expressed in vivo is found entirely located within mitochondria. Although it was now unable to reach the matrix space, it was internalized as shown by its resistance to protease in isolated mitochondria. Pulse-chase radiolabeling in the presence of an uncoupler suggests that a membrane potential is not required for the targeting of this truncated ALA synthase. Thus, the amino-terminal signal, if indispensable as a matrix targeting signal, could be replaced by an internal sequence or a particular folding for recognition by the import machinery. 相似文献
7.
G C Ferreira J S Zhang 《Cellular and molecular biology, including cyto-enzymology》2002,48(8):827-833
5-Aminolevulinate synthase, a pyridoxal 5'-phosphate-dependent enzyme of the alpha-oxoamine synthase family, catalyzes the first step of the heme biosynthetic pathway in mammalian cells. This reaction entails the condensation of glycine with succinyl-coenzyme A to yield 5-aminolevulinate, carbon dioxide and CoA. Mutations in the erythroid aminolevulinate synthase gene lead to a defective enzyme and are associated with the erythropoietic disorder X-linked sideroblastic anemia. In the past few years, rapid scanning-stopped-flow spectroscopy and chemical quenched-flow studies of the ALAS reaction, under single- and multi-turnover conditions, have provided important results for the interpretation of the catalytic mechanism. In particular, the role of the protein scaffold in modulating the chemical reactivity of the pyridoxal 5'-phosphate cofactor and, thus, the catalytic pathway of ALAS has been investigated in our laboratory using transient kinetics and global analysis of the kinetic data. 相似文献
8.
Munakata H Sun JY Yoshida K Nakatani T Honda E Hayakawa S Furuyama K Hayashi N 《Journal of biochemistry》2004,136(2):233-238
5-Aminolevulinate synthase (ALAS) is a mitochondrial enzyme that catalyzes the first step of the heme biosynthetic pathway. The mitochondrial import, as well as the synthesis, of the nonspecific isoform of ALAS (ALAS1) is regulated by heme through a feedback mechanism. A short amino acid sequence, the heme regulatory motif (HRM), is known to be involved in the regulatory function of heme. To determine the role of the HRM in the heme-regulated transport of the nonspecific and erythroid forms of ALAS in vivo, we constructed a series of mutants of rat ALAS1, in which the cysteine residues in the three putative HRMs in the N-terminal region of the enzyme were converted to serine ones by site-directed mutagenesis. The wild-type and mutant enzymes were expressed in quail QT6 fibroblasts through transient transfection, and the mitochondrial import of these enzymes was examined in the presence of hemin. Hemin inhibited the mitochondrial import of wild-type ALAS1, but this inhibition was reversed on the mutation of all three HRMs in the enzyme, indicating that the HRMs are essential for the heme-mediated inhibition of ALAS1 transport in the cell. By contrast, exogenous hemin did not affect the mitochondrial import of the erythroid-specific ALAS isoform (ALAS2) under the same experimental conditions. These results may reflect the difference in the physiological functions of the two ALAS isoforms. 相似文献
9.
The hemA gene encoding 5-aminolevulinate synthase (ALAS) from Agrobacterium radiobacter zju-0121 showed 92.6% homology with that from A. radiobacter ATCC4718 and contained several rare codons. To enhance the expression of this gene, Escherichia coli Rosetta(DE3), which is a rare codon optimizer strain, was used as the host to construct an efficient recombinant strain. And the encoded protein was over-expressed as fusion protein and was purified by affinity purification on Ni-NTA agarose and by gel filtration chromatography on Sephadex G-25 Medium resin. The recombinant protein was partly characterized, and d-glucose, d-fructose, d-xylose, d-mannose, l-arabinose, d-galactose, lactose, sucrose and maltose were detected to have no distinct inhibition on this recombinant ALAS. Meanwhile, 20 mM d-glucose or d-xylose inhibited about 20% activity of ALA dehydratase (ALAD) from Escherichia coli Rosetta(DE3). Combining d-xylose as a new inhibitor for ALAD with d-glucose in fed-batch culture and based on the optimal culture system using Rosetta(DE3)/pET28a-hemA, the yield of ALA achieved was 7.3 g/l (56 mM) under the appropriate conditions in the fermenter. 相似文献
10.
5-Aminolevulinate synthase (ALAS), the first enzyme of the heme biosynthetic pathway in mammalian cells, is a member of the alpha-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. In all structures of the enzymes of the -oxoamine synthase family, a conserved histidine hydrogen bonds with the phenolic oxygen of the PLP cofactor and may be significant for substrate binding, PLP positioning, and maintenance of the pKa of the imine nitrogen. In ALAS, replacing the equivalent histidine, H282, with alanine reduces the catalytic efficiency for glycine 450-fold and decreases the slow phase rate for glycine binding by 85%. The distribution of the absorbing 420 and 330 nm species was altered with an A420/A330 ratio increased from 0.45 to 1.05. This shift in species distribution was mirrored in the cofactor fluorescence and 300-500 nm circular dichroic spectra and likely reflects variation in the tautomer distribution of the holoenzyme. The 300-500 nm circular dichroism spectra of ALAS and H282A diverged in the presence of either glycine or aminolevulinate, indicating that the reorientation of the PLP cofactor upon external aldimine formation is impeded in H282A. Alterations were also observed in the K(Gly)d value and spectroscopic and kinetic properties, while the K(PLP)d increased 9-fold. Altogether, the results imply that H282 coordinates the movement of the pyridine ring with the reorganization of the active site hydrogen bond network and acts as a hydrogen bond donor to the phenolic oxygen to maintain the protonated Schiff base and enhance the electron sink function of the PLP cofactor. 相似文献
11.
5-Aminolevulinate synthase (ALAS) is the first enzyme of the heme biosynthetic pathway in non-plant eukaryotes and the alpha-subclass of purple bacteria. The pyridoxal 5'-phosphate cofactor at the active site undergoes changes in absorptive properties during substrate binding and catalysis that have allowed us to study the kinetics of these reactions spectroscopically. Rapid scanning stopped-flow experiments of murine erythroid 5-aminolevulinate synthase demonstrate that reaction with glycine plus succinyl-CoA results in a pre-steady-state burst of quinonoid intermediate formation. Thus, a step following binding of substrates and initial quinonoid intermediate formation is rate-determining. The steady-state spectrum of the enzyme is similar to that formed in the presence of 5-aminolevulinate, suggesting that release of this product limits the overall rate. Reaction of either glycine or 5-aminolevulinate with ALAS is slow (kf = 0.15 s-1) and approximates kcat. The rate constant for reaction with glycine is increased at least 90-fold in the presence of succinyl-CoA and most likely represents a slow conformational change of the enzyme that is accelerated by succinyl-CoA. The slow rate of reaction of 5-aminolevulinate with ALAS is 5-aminolevulinate-independent, suggesting that it also represents a slow isomerization of the enzyme. Reaction of succinyl-CoA with the enzyme-glycine complex to form a quinonoid intermediate is a biphasic process and may be irreversible. Taken together, the data suggest that turnover is limited by release of 5-aminolevulinate or a conformational change associated with 5-aminolevulinate release. 相似文献
12.
13.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in non-plant eukaryotes and some prokaryotes. The enzyme functions as a homodimer and requires pyridoxal 5'-phosphate as a cofactor. Although the roles of defined amino acids in the active site and catalytic mechanism have been recently explored using site-directed mutagenesis, much less is known about the role of the 5-aminolevulinate synthase polypeptide chain arrangement in folding, structure, and ultimately, function. To assess the importance of the continuity of the polypeptide chain, circularly permuted 5-aminolevulinate synthase variants were constructed through either rational design or screening of an engineered random library. One percent of the random library clones were active, and a total of 21 active variants had sequences different from that of the wild type 5-aminolevulinate synthase. Out of these 21 variants, 9 displayed unique circular permutations of the 5-aminolevulinate synthase polypeptide chain. The new termini of the active variants disrupted secondary structure elements and loop regions and fell in 100 amino acid regions from each terminus. This indicates that the natural continuity of the 5-aminolevulinate synthase polypeptide chain and the sequential arrangement of the secondary structure elements are not requirements for proper folding, binding of the cofactor, or assembly of the two subunits. Furthermore, the order of two identified functional elements (i.e. the catalytic and the glycine-binding domains) is apparently irrelevant for proper functioning of the enzyme. Although the wild type 5-aminolevulinate synthase and the circularly permuted variants appear to have similar, predicted overall tertiary structures, they exhibit differences in the arrangement of the secondary structure elements and in the cofactor-binding site environment. Taken together, the data lead us to propose that the 5-aminolevulinate synthase overall structure can be reached through multiple or alternative folding pathways. 相似文献
14.
Kuusisto E Suuronen T Salminen A 《Biochemical and biophysical research communications》2001,280(1):223-228
Neuronal apoptosis is involved in several pathological conditions of the brain. Using cDNA arrays, we observed upregulation of ubiquitin-binding protein p62 expression during serum withdrawal-induced apoptosis in Neuro-2a cells. We demonstrate here that the expression levels of p62 mRNA and protein were increased in Neuro-2a cells and cultured rat hippocampal neurons by different types of proapoptotic treatments, including serum deprivation, okadaic acid, etoposide, and trichostatin A. Ubiquitin-binding protein p62 is a widely expressed cytoplasmic protein of unclear function. The ability of p62 to bind noncovalently to ubiquitin and to several signalling proteins suggests that p62 may play a regulatory role connected to the ubiquitin system. Accordingly, we show that proteasomal inhibitors MG-132, lactacystin, and PSI caused a prominent upregulation of p62 mRNA and protein expression, with a concomitant increase in ubiquitinated proteins. To conclude, p62 upregulation appears to be a common event in neuronal apoptosis. Results also suggest that the induction of p62 expression by proteasomal inhibitors may be a response to elevated levels of ubiquitinated proteins, possibly constituting a protective mechanism. 相似文献
15.
Shin JA Kwon YD Kwon OH Lee HS Kim P 《Journal of microbiology and biotechnology》2007,17(9):1579-1584
5-aminolevulinate (ALA) synthase (E.C. 2.3.1.37), which mediates the pyridoxal phosphate-dependent condensation of glycine and succinyl-CoA, encoded by the Rhodobacter sphaeroides hemA gene, enables Escherichia coli strains to produce ALA at a low level. To study the effect of the enhanced C4 metabolism of E. coli on ALA biosynthesis, NADP-dependent malic enzyme (maeB, E.C. 1.1.1.40) was coexpressed with ALA synthase in E. coli. The concentration of ALA was two times greater in cells coexpressing maeB and hemA than in cells expressing hemA alone under anaerobic conditions with medium containing glucose and glycine. Enhanced ALA synthase activity via coupled expression of hemA and maeB may lead to metabolic engineering of E. coli capable of large-scale ALA production. 相似文献
16.
Turbeville TD Zhang J Adams WC Hunter GA Ferreira GC 《Archives of biochemistry and biophysics》2011,511(1-2):107-117
5-Aminolevulinate synthase (ALAS) and 8-amino-7-oxononanoate synthase (AONS) are homodimeric members of the α-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Previously, linking two ALAS subunits into a single polypeptide chain dimer yielded an enzyme (ALAS/ALAS) with a significantly greater turnover number than that of wild-type ALAS. To examine the contribution of each active site to the enzymatic activity of ALAS/ALAS, the catalytic lysine, which also covalently binds the PLP cofactor, was substituted with alanine in one of the active sites. Albeit the chemical rate for the pre-steady-state burst of ALA formation was identical in both active sites of ALAS/ALAS, the k(cat) values of the variants differed significantly (4.4±0.2 vs. 21.6±0.7 min(-1)) depending on which of the two active sites harbored the mutation. We propose that the functional asymmetry for the active sites of ALAS/ALAS stems from linking the enzyme subunits and the introduced intermolecular strain alters the protein conformational flexibility and rates of product release. Moreover, active site functional asymmetry extends to chimeric ALAS/AONS proteins, which while having a different oligomeric state, exhibit different rates of product release from the two ALAS and two AONS active sites due to the created intermolecular strain. 相似文献
17.
Jang CY Shin HS Kim HD Kim JW Choi SY Kim J 《Biochemical and biophysical research communications》2011,414(3):523-527
Human ribosomal protein S3 (rpS3) acts as a DNA repair endonuclease. The multiple functions of this protein are regulated by post-translational modifications including phosphorylation and methylation. Using a yeast-two hybrid screen, we identified small ubiquitin-related modifier-1 (SUMO-1) as a new interacting partner of rpS3. rpS3 interacted with SUMO-1 via the N- and C-terminal regions. We also observed sumoylation of rpS3 in Escherichia coli and mammalian cell systems. Furthermore, we discovered that one of three lysine residues, Lys18, Lys214, or Lys230, was sumoylated in rpS3. Interestingly, sumoylated rpS3 was resistant to proteolytic activity, indicating that SUMO-1 increased the stability of the rpS3 protein. We concluded that rpS3 is covalently modified by SUMO-1 and this post-translational modification regulates rpS3 function by increasing rpS3 protein stability. 相似文献
18.
The mitochondrial import of 5-aminolevulinate synthase (ALAS), the first enzyme of the mammalian heme biosynthetic pathway, requires the N-terminal presequence. The 49 amino acid presequence transit peptide (psALAS) for murine erythroid ALAS was chemically synthesized, and circular dichroism and (1)H nuclear magnetic resonance (NMR) spectroscopies used to determine structural elements in trifluoroethanol/H(2)O solutions and micellar environments. A well defined amphipathic alpha-helix, spanning L22 to F33, was present in psALAS in 50% trifluoroethanol. Further, a short alpha-helix, defined by A5-L8, was also apparent in the 26 amino acid N-terminus peptide, when its structure was determined in sodium dodecyl sulfate. Heme inhibition of ALAS mitochondrial import has been reported to be mediated through cysteine residues in presequence heme regulatory motifs (HRMs). A UV/visible and (1)H NMR study of hemin and psALAS indicated that a heme-peptide interaction occurs and demonstrates, for the first time, that heme interacts with the HRMs of psALAS. 相似文献
19.
Gloria C Ferreira Anton V Cheltsov 《Cellular and molecular biology, including cyto-enzymology》2002,48(1):11-16
5-Aminolevulinate synthase, a pyridoxal 5'-phosphate-dependent enzyme, catalyzes the condensation of glycine with succinyl-coenzyme A to yield aminolevulinate, carbon dioxide and CoA. This reaction corresponds to the first and regulatory step of the mammalian heme biosynthetic pathway. Mutations in the erythroid aminolevulinate synthase gene are associated with X-linked sideroblastic anemia, an erythropoietic disorder characterized by the presence of hypochromic-microcytic erythrocytes in peripheral blood and ring sideroblasts in bone marrow. In the past five years, transient kinetic studies in conjunction with three-dimensional structure models and engineered variants of aminolevulinate synthase have been instrumental in understanding the individual steps of the catalytic mechanism of aminolevulinate synthase. The mechanism of folding, assembly of the two subunits into a functional, dimeric holoenzyme has been recently explored in this laboratory using circular permutation of aminolevulinate synthase. 相似文献
20.