首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pomegranate (Punica granatum L.), in the monogeneric family Punicaceae, is found in Iran, Afghanistan, India and Mediterranean countries. Iran is considered to be its primary centre of origin. In India, pomegranate occurs naturally only in the Western Himalayan regions of Jammu and Kashmir, Himachal Pradesh and Uttarakhand States. However, there is no information about genetic variation in wild pomegranate at population level. In this paper, we describe genetic diversity across natural populations of Indian pomegranate based on inter‐simple sequence repeat (ISSR) markers. Forty‐nine accessions representing eight populations from two regions were analysed using ISSR. Seventeen ISSR primers resulted in 268 polymorphic bands, with 87.01% polymorphism throughout the accessions. Pair‐wise population genetic distances ranged from 0.05 to 0.45, with a mean of 0.25 between populations. amova and Nei’s genetic diversity analyses revealed higher genetic variation within populations than among populations. A higher genetic differentiation (GST) was observed between the spatially distant populations, indicating a low level of genetic exchange (Nm) among these populations. However, clustering of populations was not in accordance with their geographical affiliations in the tree. The results indicate that the ISSR method is sufficiently informative and powerful to assess genetic variability in pomegranate, and that patterns of genetic variability observed among populations of wild pomegranate from the Western Himalaya differ. Estimation of genetic variation reported here provides a significant insight for in situ conservation and exploitation of genetic resources for this economically important species as potential breeding material.  相似文献   

2.
Bergenia ciliata is an important medicinal plant species of Indian Himalayan Region (IHR). Genetic variability and population genetic structure of B. ciliata sampled from IHR was studied using two single primer amplification reaction (SPAR) methods (DAMD: Directed Amplification of Minisatellite region DNA; ISSR: Inter Simple Sequence Repeats). To provide a reasonable scientific basis for management and conservation of B. ciliata populations in IHR, genetic diversity analysis of 11 populations with 24 SPAR markers (15 ISSR and 9 DAMD) revealed significantly high level of (90.03%) polymorphism at species level. However, genetic variability was low at population level and KUL and BWS populations showed maximum while SHM population revealed least genetic diversity among the 11 populations. Analysis of molecular variance revealed highest percentage of variation (73%) within populations, followed by 17% among populations and least (10%) among the Himalayan regions. Clustering pattern obtained from UPGMA dendrogram was supported by STRUCTURE and principal coordinate analysis, segregating all the 11 natural populations of B. ciliata into two genetic clusters: Eastern and Western Himalayan populations. The clustering patterns of all the three statistical methods indicated that populations of B. ciliata have structured in response to the local micro-climates of the habitats in IHR, and therefore, it can be concluded that genetic variability is in congruence with the geographical diversity.  相似文献   

3.
Both mtDNA variation and allozyme data demonstrate that geographic groupings of different color morphs of the starfish Linckia laevigata are congruent with a genetic discontinuity between the Indian and Pacific Oceans. Populations of L. laevigata sampled from Thailand and South Africa, where an orange color morph predominates, were surveyed using seven polymorphic enzyme loci and restriction fragment analysis of a portion of the mtDNA including the control region. Both allozyme and DNA data demonstrated that these populations were significantly genetically differentiated from each other and to a greater degree from 23 populations throughout the West Pacific Ocean, where a blue color morph is predominant. The genetic structure observed in L. laevigata is consistent with traditional ideas of a biogeographic boundary between the Indian and Pacific Oceans except that populations several hundreds kilometers off the coast of north Western Australia (Indian Ocean) were genetically similar to and had the same color morphs as Pacific populations. It is suggested that gene flow may have continued (possibly at a reduced rate) between these offshore reefs in Western Australia and the West Pacific during Pleistocene falls in sea level, but at the same time gene flow was restricted between these Western Australian populations and those in both Thailand and South Africa, possibly by upwellings. The molecular data in this study suggest that vicariant events have played an important role in shaping the broadscale genetic structure of L. laevigata. Additionally, greater genetic structure was observed among Indian Ocean populations than among Pacific Ocean populations, probably because there are fewer reefs and island archipelagos in the Indian Ocean than in the Pacific, and because present-day surface ocean currents do not facilitate long-distance dispersal.  相似文献   

4.
Genetic evidence from the skeletal remains of three Pueblo populations, those of Hawikuh, Pueblo Bonito, and Puye, does not indicate that important racial differences arose between these groups, either through genetic influx or selection. They formed a unified group when compared with several non-Southwestern skeletal samples. Significant genetic variability, however, exists between each pair of populations, contradicting the idea of their belonging to a unified Pueblo Indian gene pool or to a fixed physical type. No differences can be detected between prehistoric populations and those contacted by Europeans. Genetic drift, supplemented by the action of non-random cultural associations and disease, provides a better explanation of the biological variability of Pueblo Indian populations than gene flow or directional selection.  相似文献   

5.
Eleven novel polymorphic microsatellite loci are presented for the highly endangered Indian (or greater one horned) rhinoceros Rhinoceros unicornis (Mammalia: Rhinocerotidae). These will be used to analyse the genetic variability within and between the two remaining large populations of the Indian rhinoceros and to manage captive breeding.  相似文献   

6.
Camel invokes fascinating chapter of Indian desert history and is integral component of its ecosystem. Camel population has reached a crisis point after three decades of decline (75%) causing major concern to the policy makers. >28% of Indian camel is not yet characterized. It is imperative to describe country’s camel germplasm and its existing diversity for designing conservation plan. One such population is Sindhi, distributed along border with Pakistan. Twenty five microsatellite markers being valuable tool for estimating genetic diversity were selected to elucidate genetic variability and relationship of Sindhi with two registered camel breeds of India- Marwari and Kharai. The standard metrics of genomic diversity detected moderate variability in all the three populations. A total of 303 alleles with a mean of 8.116 ± 0.587 alleles per locus were found in total of 143 animals. Sindhi population had intermediate allelic diversity with 8.522 ± 1.063 alleles per locus. Corresponding values in Marwari and Kharai were 8.783 ± 0.962 and 7.043 ± 1.030, respectively. Genetic variability within the breeds was moderate as evidenced by the mean observed heterozygosity of 0.556 ± 0.025. Sindhi camel population harbors higher genetic variability (Ho = 0.594) as compared to the two registered camel breeds (Marwari, 0.543 and Kharai, 0.531). Mean expected heterozygosity under Hardy-Weinberg equilibrium was higher than the observed values across the three camel groups, indicating deviations from assumptions of this model. In fact, average positive F value of 0.084 to 0.206 reflected heterozygote deficiency in these populations. These Indian camel populations have not experienced serious demographic bottlenecks in the recent past. Differences among populations were medium and accounted for 7.3% of total genetic variability. Distinctness of three camel populations was supported by all the approaches utilized to study genetic relationships such as genetic distances, phylogenetic relationship, correspondence analysis, clustering method based on Bayesian approach and individual assignment. Sindhi camel population was clearly separated from two registered breeds of Indian camel. Results conclude Sindhi to be a separate genepool. Moderate genetic diversity provides an optimistic viewpoint for the survival of severely declining indigenous camel populations with appropriate planning strategies for conserving the existing genetic variation and to avoid any escalation of inbreeding.  相似文献   

7.
Theory predicts that colonization of new areas will be associated with population bottlenecks that reduce within-population genetic diversity and increase genetic differentiation among populations. This should be especially true for weedy plant species, which are often characterized by self-compatible breeding systems and vegetative propagation. To test this prediction, and to evaluate alternative scenarios for the history of introduction, the genetic diversity of Rubus alceifolius was studied with amplified fragment length polymorphism (AFLP) markers in its native range in southeast Asia and in several areas where this plant has been introduced and is now a serious weed (Indian Ocean islands, Australia). In its native range, R. alceifolius showed great genetic variability within populations and among geographically close populations (populations sampled ranging from northern Vietnam to Java). In Madagascar, genetic variability was somewhat lower than in its native range, but still considerable. Each population sampled in the other Indian Ocean islands (Mayotte, La Réunion, Mauritius) was characterized by a single different genotype of R. alceifolius for the markers studied, and closely related to individuals from Madagascar. Queensland populations also included only a single genotype, identical to that found in Mauritius. These results suggest that R. alceifolius was first introduced into Madagascar, perhaps on multiple occasions, and that Madagascan individuals were the immediate source of plants that colonized other areas of introduction. Successive nested founder events appear to have resulted in cumulative reduction in genetic diversity. Possible explanations for the monoclonality of R. alceifolius in many areas of introduction are discussed.  相似文献   

8.
Paul E.  Hertz  E. Zouros 《Journal of Zoology》1982,196(4):499-518
Meristic and electrophoretic characters were used as independent estimators of genetic variability within populations of two West Indian Anolis lizard species. The species which uses flexible regulatory behaviours to maintain thermal homeostasis, A. roquet on Martinique, exhibited much less within-population electrophoretic variability than did the species which is behaviourally passive to changes in the thermal environment, A. gundlachi on Puerto Rico. The data suggest that the high genetic variability in A. gundlachi may be an adaptation to its coarse-grained perception of seasonal variation in the thermal environment, whereas A. roquet's low genetic variability may be adaptive because its flexible regulatory behaviours provide a temporally fine-grained perception of the thermal environment. Meristic characters did not demonstrate any interspecific difference in the amount of within-population genetic variability. Discordance in the results of the meristic and electrophoretic analyses suggest either that the two character sets sample dramatically different genetic phenomena or that environmental effects on the development of meristic characters render them unreliable as indicators of the genetic variability within geographically proximate populations.  相似文献   

9.
The allozyme variability of the common shrew Sorex araneus of Western Siberia is studied. The small level of genetic variability and lack of reliable differences in indices of polymorphism for taiga, subtaiga, and forest-steppe populations are revealed. A significant level of genetic differentiation in populations belonging to adjacent chromosomal races—Novosibirsk and Serov (F st = 0.3) — has been shown.  相似文献   

10.
Because of the widespread phenomenon of patrilocality, it is hypothesized that Y-chromosome variants tend to be more localized geographically than those of mitochondrial DNA (mtDNA). Empirical evidence confirmatory to this hypothesis was subsequently provided among certain patrilocal and matrilocal groups of Thailand, which conforms to the isolation by distance mode of gene diffusion. However, we expect intuitively that the patterns of genetic variability may not be consistent with the above hypothesis among populations with different social norms governing the institution of marriage, particularly among those that adhere to strict endogamy rules. We test the universality of this hypothesis by analyzing Y-chromosome and mtDNA data in three different sets of Indian populations that follow endogamy rules to varying degrees. Our analysis of the Indian patrilocal and the matrilocal groups is not confirmatory to the sex-specific variation observed among the tribes of Thailand. Our results indicate spatial instability of the impact of different cultural processes on the genetic variability, resulting in the lack of universality of the hypothesized pattern of greater Y-chromosome variation when compared to that of mtDNA among the patrilocal populations.  相似文献   

11.
We analyzed mtDNA polymorphisms (parts of control region, ND5, ND2, Cytb, 12S, together 902 bp) in 59 scat and 18 tissue samples from 13 Indian populations of the critically endangered Indian tiger (Panthera tigris tigris), along with zoo animals as reference. Northern tiger populations exhibit two unique haplotypes suggesting genetic isolation. Western populations from Sariska (extinct in 2004) and Ranthambore are genetically similar, such that Ranthambore could serve as a source for reintroduction in Sariska. Zoo populations maintain mitochondrial lineages that are rare or absent in the wild.  相似文献   

12.
The red palm mite (RPM), Raoiella indica Hirst (Acari: Tenuipalpidae), is an invasive phytophagous mite that was recently introduced into The Americas. The predatory mite Amblyseius largoensis Muma (Acari: Phytoseiidae) has been the only natural enemy consistently found in association with RPM. This study aimed to determine if A. largoensis populations from the Indian Ocean Islands (La Réunion and Mauritius) and the Americas (Brazil, Trinidad and Tobago and the USA) consist a taxonomic unit or a group of cryptic species. First, the morphological variability among the A. largoensis populations from these areas was evaluated through morphometric analyses of 36 morphological traits. Then, their genetic variability and phylogenetic relationships were assessed based on two target DNA fragments: the nuclear Internal Transcribed Spacer and the mithochondrial 12S rRNA. Finally, reproductive compatibility of the populations from La Réunion and Roraima, Brazil was evaluated. Morphometric differences between the A. largoensis specimens from La Réunion Island and the Americas were observed, most of them on the length of the setae. Molecular analysis indicated that the A. largoensis populations from the Indian Ocean Islands and the Americas belong to the same taxonomic entity, although to two well defined genetic groups. Crossings involving the A. largoensis populations from La Réunion Island and Roraima, Brazil revealed complete reproductive compatibility between these populations. Information on the morphometric and genetic variability among studied A. largoensis populations can be further exploited in future studies to follow colonization of Indian Ocean Islands populations in the Americas, in the case of field releases.  相似文献   

13.
Germplasm characterization and evolutionary process in viable populations are important links between the conservation and utilization of plant genetic resources. Here, an investigation is made, based on molecular and biochemical techniques for assessing and exploiting the genetic variability in germplasm characterization of taro, which would be useful in plant breeding and ex situ conservation of taro plant genetic resources. Geographical differentiation and phylogenetic relationships of Indian taro, Colocasia esculenta (L.) Schott, were analyzed by random amplified polymorphic DNA (RAPD) and isozyme of seven enzyme systems with specific reference to the Muktakeshi accession, which has been to be proved resistant to taro leaf blight caused by P. colocasiae. The significant differentiations in Indian taro cultivars were clearly demonstrated by RAPD and isozyme analysis. RAPD markers showed higher values for genetic differentiation among taro cultivars and lower coefficient of variation than those obtained from isozymes. Genetic differentiation was evident in the taro accessions collected from different regions of India. It appears that when taro cultivation was introduced to a new area, only a small fraction of genetic variability in heterogeneous taro populations was transferred, possibly causing random differentiation among locally adapted taro populations. The selected primers will be useful for future genetic analysis and provide taro breeders with a genetic basis for selection of parents for crop improvement. Polymorphic markers identified in the DNA fingerprinting study will be useful for screening a segregating population, which is being generated in our laboratory aimed at developing a taro genetic linkage map.  相似文献   

14.
Native to South America, the potato cyst nematode Globodera pallida is one of the principal pests of Andean potato crops and is also an important global pest following its introduction to Europe, Africa, North America, Asia and Oceania. Building on earlier work showing a clear south to north phylogeographic pattern in Peruvian populations, we have been able to identify the origin of Western European populations with high accuracy. They are all derived from a single restricted area in the extreme south of Peru, located between the north shore of the Lake Titicaca and Cusco. Only four cytochrome b haplotypes are found in Western Europe, one of them being also found in some populations of this area of southern Peru. The allelic richness at seven microsatellite loci observed in the Western European populations, although only one-third of that observed in this part of southern Peru, is comparable to the allelic richness observed in the northern region of Peru. This result could be explained by the fact that most of the genetic variability observed at the scale of a field or even of a region is already observed at the scale of a single plant within a field. Thus, even introduction via a single infected potato plant could result in the relatively high genetic variability observed in Western Europe. This finding has important consequences for the control of this pest and the development of quarantine measures.  相似文献   

15.
Aim Cryptoblepharus is a genus of small arboreal or rock‐dwelling scincid lizards, widespread through the Indo‐Pacific and Australian regions, with a disjunct outlier in the Malagasy region. The taxonomy within this genus is controversial, with different authors ranking the different forms (now some 36) at various levels, from different species to subspecies of a single species, Cryptoblepharus boutonii. We investigated the biogeography and genetic differentiation of the Cryptoblepharus from the Western Indian Ocean region, in order to understand their origin and history. Location Western Indian Ocean region. Methods We analysed sequences of mitochondrial DNA (partial 12s and 16s rRNA genes, 766 bp) from 48 specimens collected in Madagascar, Mauritius, the four Comoros islands and East Africa, and also in New Caledonia, representing the Australo‐Pacific unit of the distribution. Results Pairwise sequence divergences of c. 3.1% were found between the New Caledonian forms and the ones from the Western Indian Ocean. Two clades were identified in Madagascar, probably corresponding to the recognized forms cognatus and voeltzkowi, and two clades were identified in the Comoro islands, where each island population formed a distinct haplotype clade. The East African samples form a monophyletic unit, with some variation existing between Pemba, Zanzibar and continental Tanzania populations. Individuals from Mauritius form a divergent group, more related to populations from Moheli and Grand Comore (Comoros islands) than to the others. Main conclusions The level of divergence between the populations from the Western Indian Ocean and Australian regions and the geographic coherence of the variation within the Western Indian Ocean group are concordant with the hypothesis of a colonization of this region by a natural transoceanic dispersal (from Australia or Indonesia). The group then may have diversified in Madagascar, from where it separately colonized the East African coast, the Comoros islands (twice), and Mauritius. The genetic divergence found is congruent with the known morphological variation, but its degree is much lower than typically seen between distinct species of reptiles.  相似文献   

16.
Abstract

Albizia lebbeck (L.) Benth., a popular multi‐purpose legume tree species, has a wide distribution throughout the Indian subcontinent. The species is highly valued for its quality timber, gum yield and therapeutical uses. However, the increasing social and economical pressures are devastating the natural stands of A. lebbeck forests. So, there is a need to estimate the genetic variation present in A. lebbeck populations. Both RAPD and ISSR molecular markers were used to analyse 172 individuals representing eight populations of the species in different geographical range. The within‐population genetic diversity ranged from 1.23 to 1.38. The total gene variability was 0.34 of which 0.17 (50%) accounted for within‐population gene variability. The genetic differentiation between populations (Gst = 0.49) was significantly correlated to geographical distance (r = 0.61, p < 0.001). An UPGMA clustering suggests a high level of genetic isolation due to distance. This study revealed the genetic differentiation which will provide a template for adaptation and evolution of the populations and species.  相似文献   

17.
Spatial variation in allelic frequencies at nine allozyme loci were assayed in 20 populations of the crown-of-thorns starfish, Acanthaster planci, collected throughout the Pacific and Indian Oceans. These data were analyzed together with published data, for the same loci, from an additional 19 populations, giving a total sample size of approximately 1800 individuals. There was a marked discontinuity between the Indian and Pacific Ocean populations, but those off Western Australia and from the Southeast Asian region had a strong Pacific affinity. The genetic groups were congruent with the distributions of two color morph groups: gray-green to red-brown forms in the Pacific and a blue to pale red form in the Indian Ocean. These patterns of genetic structure are similar to those described for the starfish Linckia laevigata, which has similar life-history characteristics. Vicariant events may have influenced some populations within the Pacific, but the allozyme data cannot resolve the effects of these events clearly. Patterns of variation within regions were consistent with isolation by distance, but, at larger scales, were obscured by regional vicariance and some outliers, particularly by apparently high levels of gene flow between Japan and the Great Barrier Reef, Australia. Apparent gene flow between population pairs was not closely related to present-day ocean currents. The results demonstrate a strong influence of allopatric separation on genetic divergence at large geographic scales, but also show evidence of slow rates of change in gene frequencies consistent with the large population sizes of this species. Low levels of divergence between groups demonstrate the genetic structure is recent (Pleistocene) and are likely responses to changes in climate and sea level.  相似文献   

18.
Together, Indian plus Seychelles caeciliid caecilian amphibians (Gymnophiona) constitute approximately 10% of the extant species of this order. A molecular phylogenetic analysis of all but one (or two) nominal species (16, in five genera) is presented based on mitochondrial (12S, 16S, cytb, cox1) and nuclear (RAG1) sequence data. Results strongly support monophyly of both Seychelles and peninsular Indian caeciliids, and their sister-group status. Within the Indian caeciliids, Indotyphlus and Gegeneophis are monophyletic sister genera. The phylogenetic position of Gegeneophis ramaswamii, Gegeneophis seshachari, and Gegeneophis carnosus are not well resolved, but all lie outside a well-supported clade of most northern Western Ghats Gegeneophis (madhavai, mhadeiensis, goaensis, danieli/nadkarnii). Most nominal species of Indian caeciliid are diagnosed by robust haplotype clades, though the systematics of G. carnosus-like forms in northern Kerala and southern Karnataka requires substantial further investigation. For the most part, Indian caeciliid species comprise narrowly distributed, allopatric taxa with low genetic diversity. Much greater geographic genetic diversity exists among populations referred to G. seshachari, such that some populations likely represent undescribed species. This, the first phylogenetic analysis of Indian caeciliids, generally provides additional support for recent increases in described species (eight since 1999), and a framework for ongoing taxonomic revision.  相似文献   

19.
Indian oil sardines, commercially and ecologically important pelagic fishes in Indian waters have not been the focus of major genetic studies as compared to their counter parts in Atlantic and Pacific oceans in spite of several reports suggesting stock complexity and intraspecific diversity. Hence, we investigated the genetic stock structure of Indian oil sardine, Sardinella longiceps using microsatellite markers by collecting a total of 768 individuals from eight locations along the Indian coast and one from Gulf of Oman over a 2 year period (2013–2015). Six polymorphic microsatellite markers revealed significant genetic differentiation between populations with the highest FST value (0.055) between Oman and Indian coastline. Within the Indian coastline another major subdivision between Mumbai & Mangalore vs. other regions was detected (FST value 0.047) which was also confirmed in Barrier analysis with the presence of two strong barriers between these eco-regions. There exist pronounced differences in oceanographic and environmental features between Gulf of Oman, Western Indian Ocean and Eastern Indian Ocean (Bay of Bengal) which may act as barriers for effective dispersal and gene flow resulting in genetic differentiation. Even though, the samples collected from Calicut, Kollam, Trivandrum, Chennai and Vizag showed the presence of admixed genotypes, the possible presence of distinct populations in some regions was evident in Bayesian analysis which needs to be confirmed further using more widespread sampling design and powerful markers. The present study provided insights into the biocomplexity and intra-specific diversity of Indian oil sardine populations, which needs to be preserved for maintaining resilience of these important fishes to climate change and habitat alterations in the Indian Ocean.  相似文献   

20.
Halophila stipulacea is a dioecious marine angiosperm, widely distributed along the western coasts of the Indian Ocean and the Red Sea. This species is thought to be a Lessepsian immigrant that entered the Mediterranean Sea from the Red Sea after the opening of the Suez Canal (1869). Previous studies have revealed both high phenotypic and genetic variability in Halophila stipulacea populations from the western Mediterranean basin. In order to test the hypothesis of a Lessepsian introduction, we compare genetic polymorphism between putative native (Red Sea) and introduced (Mediterranean) populations through rDNA ITS region (ITS1-5.8S-ITS2) sequence analysis. A high degree of intraindividual variability of ITS sequences was found. Most of the intragenomic polymorphism was due to pseudogenic sequences, present in almost all individuals. Features of ITS functional sequences and pseudogenes are described. Possible causes for the lack of homogenization of ITS paralogues within individuals are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号