首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The field of de novo protein design, though only two decades old, has already reached the point where designing and selecting novel proteins that are functionally active has been achieved several times. Here we review recently reported de novo functional proteins that were developed using various approaches, including rational design, computational optimization, and selection from combinatorial libraries. The functions displayed by these proteins range from metal binding to enzymatic catalysis. Some were designed for specific applications in engineering and medicine, and others provide life-sustaining functions in vivo.  相似文献   

2.
Successful approaches of de novo protein design suggest a great potential to create novel structural folds and to understand natural rules of protein folding. For these purposes, smaller and simpler de novo proteins have been developed. Here, we constructed smaller proteins by removing the terminal sequences from stable de novo vTAJ proteins and compared stabilities between mutant and original proteins. vTAJ proteins were screened from an α3β3 binary-patterned library which was designed with polar/ nonpolar periodicities of α-helix and β-sheet. vTAJ proteins have the additional terminal sequences due to the method of constructing the genetically repeated library sequences. By removing the parts of the sequences, we successfully obtained the stable smaller de novo protein mutants with fewer amino acid alphabets than the originals. However, these mutants showed the differences on ANS binding properties and stabilities against denaturant and pH change. The terminal sequences, which were designed just as flexible linkers not as secondary structure units, sufficiently affected these physicochemical details. This study showed implications for adjusting protein stabilities by designing N- and C-terminal sequences.  相似文献   

3.
Metalloprotein and redox protein design are rapidly advancing toward the chemical synthesis of novel proteins that have predictable structures and functions. Current data demonstrate a breadth of successful approaches to metallopeptide and metalloprotein design based on de novo, rational and combinatorial strategies. These sophisticated synthetic analogs of natural proteins constructively test our comprehension of metalloprotein structure/function relationships. Additionally, designed redox proteins provide novel constructs for examining the thermodynamics and kinetics of biological electron transfer.  相似文献   

4.
A central goal of protein design is to devise novel proteins for applications in biotechnology and medicine. Many applications, including those focused on sensing and catalysis will require proteins that recognize and bind to small molecules. Here, we show that stably folded α-helical proteins isolated from a binary patterned library of designed sequences can be mutated to produce binding sites capable of binding a range of small aromatic compounds. Specifically, we mutated two phenylalanine side chains to alanine in the known structure of de novo protein S-824 to create buried cavities in the core of this four-helix bundle. The parental protein and the Phe→Ala variants were exposed to mixtures of compounds, and selective binding was assessed by saturation transfer difference NMR. The affinities of benzene and a number of its derivatives were determined by pulse field gradient spin echo NMR, and several of the compounds were shown to bind the mutated protein with micromolar dissociation constants. These studies suggest that stably folded de novo proteins from binary patterned libraries are well-suited as scaffolds for the design of binding sites.  相似文献   

5.
6.
Alvizo O  Allen BD  Mayo SL 《BioTechniques》2007,42(1):31, 33, 35 passim
Natural evolution has produced an astounding array of proteins that perform the physical and chemical functions required for life on Earth. Although proteins can be reengineered to provide altered or novel functions, the utility of this approach is limited by the difficulty of identifying protein sequences that display the desired properties. Recently, advances in the field of computational protein design (CPD) have shown that molecular simulation can help to predict sequences with new and improved functions. In the past few years, CPD has been used to design protein variants with optimized specificity of binding to DNA, small molecules, peptides, and other proteins. Initial successes in enzyme design highlight CPD's unique ability to design function de novo. The use of CPD for the engineering of potential therapeutic agents has demonstrated its strength in real-life applications.  相似文献   

7.
8.
Protein design is the field of synthetic biology that aims at developing de novo custom‐made proteins and peptides for specific applications. Despite exploring an ambitious goal, recent computational advances in both hardware and software technologies have paved the way to high‐throughput screening and detailed design of novel folds and improved functionalities. Modern advances in the field of protein design for small molecule targeting are described in this review, organized in a step‐by‐step fashion: from the conception of a new or upgraded active binding site, to scaffold design, sequence optimization, and experimental expression of the custom protein. In each step, contemporary examples are described, and state‐of‐the‐art software is briefly explored.  相似文献   

9.
Synthetic biology--putting engineering into biology   总被引:1,自引:0,他引:1  
Synthetic biology is interpreted as the engineering-driven building of increasingly complex biological entities for novel applications. Encouraged by progress in the design of artificial gene networks, de novo DNA synthesis and protein engineering, we review the case for this emerging discipline. Key aspects of an engineering approach are purpose-orientation, deep insight into the underlying scientific principles, a hierarchy of abstraction including suitable interfaces between and within the levels of the hierarchy, standardization and the separation of design and fabrication. Synthetic biology investigates possibilities to implement these requirements into the process of engineering biological systems. This is illustrated on the DNA level by the implementation of engineering-inspired artificial operations such as toggle switching, oscillating or production of spatial patterns. On the protein level, the functionally self-contained domain structure of a number of proteins suggests possibilities for essentially Lego-like recombination which can be exploited for reprogramming DNA binding domain specificities or signaling pathways. Alternatively, computational design emerges to rationally reprogram enzyme function. Finally, the increasing facility of de novo DNA synthesis-synthetic biology's system fabrication process-supplies the possibility to implement novel designs for ever more complex systems. Some of these elements have merged to realize the first tangible synthetic biology applications in the area of manufacturing of pharmaceutical compounds.  相似文献   

10.
The design of new proteins that expand the repertoire of natural protein structures represents a formidable challenge. Success in this area would increase understanding of protein structure and present new scaffolds that could be exploited in biotechnology and synthetic biology. Here we describe the design, characterization and X-ray crystal structure of a new coiled-coil protein. The de novo sequence forms a stand-alone, parallel, six-helix bundle with a channel running through it. Although lined exclusively by hydrophobic leucine and isoleucine side chains, the 6-? channel is permeable to water. One layer of leucine residues within the channel is mutable, accepting polar aspartic acid and histidine side chains, which leads to subdivision and organization of solvent within the lumen. Moreover, these mutants can be combined to form a stable and unique (Asp-His)(3) heterohexamer. These new structures provide a basis for engineering de novo proteins with new functions.  相似文献   

11.
Shurki A  Warshel A 《Proteins》2004,56(1):1-10
Globular proteins are characterized by the specific and tight packing of hydrophobic side-chains in the so-called "hydrophobic core." Formation of the core is key in folding, stabilization, and conformational specificity. The critical role of hydrophobic cores in maintaining the highly ordered structures present in natural proteins justifies the tremendous efforts devoted to their redesign. Both experimental and computational combinatorial-based approaches have been reported in the last years as powerful protein design tools. These manage to explore large regions of the sequence/conformational space, allowing the search for alternative protein core arrangements displaying native-like properties. The overall results obtained from core design projects have contributed significantly to our present knowledge of protein folding and function. In addition, core design has worked as a benchmark for the development of ambitious protein design projects that nowadays are allowing the de novo design of novel protein structures and functions.  相似文献   

12.
Diiron proteins represent a diverse class of structures involved in the binding and activation of oxygen. This review explores the simple structural features underlying the common metal-ion-binding and oxygen-binding properties of these proteins. The backbone geometries of their active sites are formed by four-helix bundles, which may be parameterized to within approximately 1 A root mean square deviation. Such parametric models are excellent starting points for investigating how asymmetric deviations from an idealized geometry influence the functional properties of the metal ion centers. These idealized models also provide attractive frameworks for de novo protein design.  相似文献   

13.
Protein design.     
Several noteworthy papers have been published in the past year in which the creation of interesting novel proteins, either by de novo design or the redesign of existing proteins, has been reported. Highlights include the successful design of proteins for binding specific ligands.  相似文献   

14.
A new method has been developed to detect functional relationships among proteins independent of a given sequence or fold homology. It is based on the idea that protein function is intimately related to the recognition and subsequent response to the binding of a substrate or an endogenous ligand in a well-characterized binding pocket. Thus, recognition of similar ligands, supposedly linked to similar function, requires conserved recognition features exposed in terms of common physicochemical interaction properties via the functional groups of the residues flanking a particular binding cavity. Following a technique commonly used in the comparison of small molecule ligands, generic pseudocenters coding for possible interaction properties were assigned for a large sample set of cavities extracted from the entire PDB and stored in the database Cavbase. Using a particular query cavity a series of related cavities of decreasing similarity is detected based on a clique detection algorithm. The detected similarity is ranked according to property-based surface patches shared in common by the different clique solutions. The approach either retrieves protein cavities accommodating the same (e.g. co-factors) or closely related ligands or it extracts proteins exhibiting similar function in terms of a related catalytic mechanism. Finally the new method has strong potential to suggest alternative molecular skeletons in de novo design. The retrieval of molecular building blocks accommodated in a particular sub-pocket that shares similarity with the pocket in a protein studied by drug design can inspire the discovery of novel ligands.  相似文献   

15.
We previously reported the de novo design of combinatorial libraries of proteins targeted to fold into four-helix bundles. The sequences of these proteins were designed using a binary code strategy in which each position in the linear sequence is designated as either polar or nonpolar, but the exact identity of the amino acid at each position is varied combinatorially. We subsequently reported that approximately half of these binary coded proteins were capable of binding heme. These de novo heme-binding proteins showed CO binding characteristics similar to natural heme proteins, and several were active as peroxidases. Here we analyze the midpoint reduction potentials and heme binding stoichiometries of several of these de novo heme proteins. All the proteins bound heme with a 1:1 stoichiometry. The reduction potentials ranged from -112 to -176 mV. We suggest that this represents an estimate of the default range of potentials for heme proteins that have neither been prejudiced by rational design nor selected by evolution.  相似文献   

16.
《Biophysical journal》2020,118(2):366-375
Despite advances in sampling and scoring strategies, Monte Carlo modeling methods still struggle to accurately predict de novo the structures of large proteins, membrane proteins, or proteins of complex topologies. Previous approaches have addressed these shortcomings by leveraging sparse distance data gathered using site-directed spin labeling and electron paramagnetic resonance spectroscopy to improve protein structure prediction and refinement outcomes. However, existing computational implementations entail compromises between coarse-grained models of the spin label that lower the resolution and explicit models that lead to resource-intense simulations. These methods are further limited by their reliance on distance distributions, which are calculated from a primary refocused echo decay signal and contain uncertainties that may require manual refinement. Here, we addressed these challenges by developing RosettaDEER, a scoring method within the Rosetta software suite capable of simulating double electron-electron resonance spectroscopy decay traces and distance distributions between spin labels fast enough to fold proteins de novo. We demonstrate that the accuracy of resulting distance distributions match or exceed those generated by more computationally intensive methods. Moreover, decay traces generated from these distributions recapitulate intermolecular background coupling parameters even when the time window of data collection is truncated. As a result, RosettaDEER can discriminate between poorly folded and native-like models by using decay traces that cannot be accurately converted into distance distributions using regularized fitting approaches. Finally, using two challenging test cases, we demonstrate that RosettaDEER leverages these experimental data for protein fold prediction more effectively than previous methods. These benchmarking results confirm that RosettaDEER can effectively leverage sparse experimental data for a wide array of modeling applications built into the Rosetta software suite.  相似文献   

17.
18.
Computational protein design continues to experience a variety of methodological advances. Several improvements have been suggested for the objective functions used to quantify sequence/structure compatibility. Disparate design strategies based upon dead-end elimination, simulated annealing and statistical design have each recently yielded striking successes involving de novo designed proteins with sizes on the order of 100 residues or greater. Such methods may be used to design new proteins, as well as to redesign natural proteins to facilitate structural and biophysical studies.  相似文献   

19.
Creating functional biological molecules de novo requires a detailed understanding of the intimate relationship between primary sequence, folding mechanism, and packing topology, and remains up to now a most challenging goal in protein design and mimicry. As a consequence, the use of well-defined robust macromolecules as scaffolds for the introduction of function by grafting surface residues has become a major objective in protein engineering and de novo design. In this article, the concept of scaffolds is demonstrated on some selected examples, illustrating that novel types of functional molecules can be generated. Reengineered proteins and, most notably, de novo designed peptide scaffolds exhibiting molecular function, are ideal tools for structure-function studies and as leads in drug design.  相似文献   

20.
Recent studies provide a glimpse of future potential therapeutic applications of custom-designed zinc finger proteins in achieving highly specific genomic manipulation. Custom-design of zinc finger proteins with tailor-made specificity is currently limited by the availability of information on recognition helices for all possible DNA targets. However, recent advances suggest that a combination of design and selection method is best suited to identify custom zinc finger DNA-binding proteins for known genome target sites. Design of functionally self-contained zinc finger proteins can be achieved by (a) modular protein engineering and (b) computational prediction. Here, we explore the novel functionality obtained by engineered zinc finger proteins and the computational approaches for prediction of recognition helices of zinc finger proteins that can raise our ability to re-program zinc finger proteins with desired novel DNA-binding specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号