首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
(1) The steady-state kinetics of the NADH dehydrogenase activity of Type-II (low molecular weight) NADH dehydrogenase with the acceptors ferricyanide, cytochrome c and 2,6-dichloroindophenol are consistent with the simultaneous operation of an ordered and a ping-pong mechanism. Thus, depending on the acceptor concentration, the reduced enzyme is preferentially oxidized before or after NAD+ disociates from it. (2) The acceptors are able to oxidize the reduced enzyme and its NAD+ complex equally well. In contrast to the kinetics of the Type-I (high molecular weight) enzyme, double substrate inhibition is not found, implying that the site of oxidation of the reduced enzyme by acceptors and the NADH-binding site are remote. (3) With the indophenol, in the concentration range measured, the ordered mechanism is mainly operative. At infinite NADH and acceptor concentrations the rate constant of the reduction of enzyme by bound NADH is measured. (4) With ferricyanide and cytochrome c, in the concentration range measured, erroneous conclusions may be drawn from extrapolations owing to the fact that extrapolated lines in double-reciprocal plots of turnover number against acceptor concentration, at different NADH concentrations, intersect in the third quadrant. A method is described that allows the extrapolation of these data to zero acceptor concentrations. (5) The relation between activity and NADH concentration is sigmoidal (h = 2.0) with ferricyanide or cytochrome c as acceptor, but hyperbolic with 2,6-dichloroindophenol. The latter is also an inhibitor, competitive with respect to NADH. It is concluded that this two-electron acceptor, like ubiquinone, acts as an allosteric effector. (6) Type II is isolated from Type I without gross changes in tertiary structure, as judged by the unaltered rate constants of dissociation of NADH (k-1) and NAD+ (k4) and association of NADH (k1). (7) Type II differs from Type I in two respects, (a) The accessibility of the acceptors is greater by at least two orders of magnitude (k3). (b) The redox potential of the prosthetic group FMN is 120 mV less, as judged by a drop in the value of k2 by four orders of magnitude. It is suggested that one or more of the iron-sulphur proteins present in Type-I but lacking in Type-II dehydrogenase functions as an effector, regulating the redox potential of the FMN.  相似文献   

2.
3.
4.
The mitochondrial nicotinamide adenine dinucleotide, reduced (NADH) dehydrogenase complex (complex I) of plants has a molecular mass of about 1000 kDa and is composed of more than 40 distinct protein subunits. About three quarter of these subunits are homologous to complex I subunits of heterotrophic eukaryotes, whereas the remaining subunits are unique to plants. Among them are three to five structurally related proteins that resemble an archaebacterial γ-type carbonic anhydrase (γCA). The γCA subunits are attached to the membrane arm of complex I on the matrix-exposed side and form an extra spherical domain. At the same time, they span the inner mitochondrial membrane and are essential for assembly of the protein complex. Expression of the genes encoding γCA subunits is reduced if plants are cultivated in the presence of elevated CO2 concentration. The functional role of these subunits within plant mitochondria is currently unknown but might be related to photorespiration. We propose that the complex I–integrated γCAs are involved in mitochondrial HCO3 formation to allow efficient recycling of inorganic carbon for CO2 fixation in chloroplasts under high light conditions.  相似文献   

5.
6.
An analysis of the subunits of the high molecular weight proteinase, macropain (multicatalytic proteinase or proteasome) from human erythrocytes has been conducted using N-terminal amino acid sequencing, gel electrophoresis and reverse-phase peptide mapping. This analysis provided evidence for the existence of 13 subunits of different primary structure. Five subunits were susceptible to the Edman degradation and yielded unique N-terminal sequences. Similarities among these sequences, however, indicated that the subunits are homologues. Two-dimensional gel electrophoresis discriminated 10 major components, which included two of the subunits for which N-terminal sequences had been determined and eight N-terminally blocked subunits. Tryptic peptide mapping indicated that all 10 of these components have a different amino acid sequence. Tryptic peptides from some of the subunits were subjected to amino acid sequence analysis, and the data indicated that all the subunits tested in this way are related by common ancestry. The data suggest that at least nine of the total of 13 subunits are encoded by members of the same gene family; the remaining four subunits have not yet been investigated in sufficient detail to establish their relationships. No evidence for a close relationship with any previously investigated proteinase family has been found. Finally, through a comparison of the ‘latent’ and ‘active’ forms of macropain, the study established a close similarity in the subunit composition of these catalytically very different species, although proteolytic degradation of selected subunits appears in the active form of the enzyme.  相似文献   

7.
8.
9.
10.
Local tissue concentrations of glucocorticoids are modulated by the enzyme 11β-hydroxysteroid dehydrogenase which interconverts cortisol and the inactive glucocorticoid cortisone in man, and corticosterone and 11-dehydrocorticosterone in rodents. The type I isoform (11β-HSD1) is a bidirectional enzyme but acts predominantly as a oxidoreductase to form the active glucocorticoids cortisol or corticosterone, while the type II enzyme (11β-HSD2) acts unidirectionally producing inactive 11-keto metabolites. There are no known clinical conditions associated with 11β-HSD1 deficiency, but gene deletion experiments in the mouse indicate that this enzyme is important both for the maintenance of normal serum glucocorticoid levels, and in the activation of key hepatic gluconeogenic enzymes. Other important sites of action include omental fat, the ovary, brain and vasculature. Congenital defects in the 11β-HSD2 enzyme have been shown to account for the syndrome of apparent mineralocorticoid excess (AME), a low renin severe form of hypertension resulting from the overstimulation of the non-selective mineralocorticoid receptor by cortisol in the distal tubule of the kidney. Inactivation of the 11β-HSD2 gene in mice results in a phenotype with similar features to AME. In addition, these mice show high neonatal mortality associated with marked colonic distention, and remarkable hypertrophy and hyperplasia of the distal tubule epithelia. 11β-HSD2 also plays an important role in decreasing the exposure of the fetus to the high levels of maternal glucocorticoids. Recent work suggests a role for 11β-HSD2 in non-mineralocorticoid target tissues where it would modulate glucocorticoid access to the glucocorticoid receptor, in invasive breast cancer and as a mechanism providing ligand for the putative 11-dehydrocorticosterone receptor. While previous homologies between members of the SCAD superfamily have been of the order of 20–30% phylogenetic analysis of a new branch of retinol dehydrogenases indicates identities of >60% and overlapping substrate specificities. The availability of crystal structures of family members has allowed the mapping of conserved 11β-HSD domains A–D to a cleft in the protein structure (cofactor binding domain), two parallel β-sheets, and an -helix (active site), respectively.  相似文献   

11.
Type II NADH dehydrogenases (NDH-2) are monomeric enzymes that catalyse quinone reduction and allow electrons to enter the respiratory chain in different organisms including higher plant mitochondria, bacteria and yeasts. In this study, an Agrobacterium tumefaciens gene encoding a putative alternative NADH dehydrogenase (AtuNDH-2) was isolated and expressed in Escherichia coli as a (His)6-tagged protein. The purified 46 kDa protein contains FAD as a prosthetic group and oxidizes both NADH and NADPH with similar Vmax values, but with a much higher affinity for NADH than for NADPH. AtuNDH-2 complements the growth (on a minimal medium) of an E. coli mutant strain deficient in both NDH-1 and NDH-2, and is shown to supply electrons to the respiratory chain when incubated with bacterial membranes prepared from this mutant. By measuring photosystem II chlorophyll fluorescence on thylakoid membranes prepared from the green alga Chlamydomonas reinhardtii, we show that AtuNDH-2 is able to stimulate NADH-dependent reduction of the plastoquinone pool. We discuss the possibility of using heterologous expression of NDH-2 enzymes to improve nonphotochemical reduction of plastoquinones and H2 production in C. reinhardtii.  相似文献   

12.
The effect of dynamic exercise on the NADH content of human type I (slow-twitch) and II (fast-twitch) muscle fibres was investigated. Muscle biopsy samples were obtained from the quadriceps femoris of seven healthy subjects at rest and after bicycle exercise at 40, 75 and 100% of the maximal oxygen uptake [VO2(max.)]. At rest and after exercise at 100% VO2(max.), muscle NADH content was significantly higher (P less than 0.05) in type I than in type II fibres. After exercise at 40% VO2(max.), muscle NADH decreased in type I fibres (P less than 0.01), but was not significantly changed in type II fibres. After exercise at 75 and 100% VO2(max.), muscle NADH increased above the value at rest in both type I and II fibres (P less than 0.05). Muscle lactate was unchanged at 40% VO2(max.), but increased 20- and 60-fold after exercise at 75 and 100% VO2(max.) respectively. The finding that NADH decreased only in type I fibres at 40% VO2(max.) supports the idea that type I is the fibre type predominantly recruited during low-intensity exercise. The increase of NADH in both fibre types after exercise at 75% and 100% VO2(max.) suggests that the availability of oxygen relative to the demand is decreased in both fibre types at high exercise intensities.  相似文献   

13.
Mitochondrial NADH dehydrogenase has been purified to homogeneity by resolution of Complex I from beef heart mitochondria with the chaotrope NaClO4 and precipitation of the enzyme with ammonium sulfate. The enzyme is water-soluble, has a molecular weight of 69,000 ± 1000 as determined by gel filtration on Sephadex G-100 and agarose 1.5 M. It is an iron-sulfur flavoprotein, with the ratio of flavin (FMN) to nonheme iron to labile sulfide being 1:5–6:5–6. The FMN content suggests a minimum molecular weight of 74,000 ± 3000 for the enzyme. NADH dehydrogenase is composed of three subunits with apparent Mr values, as determined by acrylamide gel electrophoresis as well as by gel filtration on agarose 5 M both in the presence of sodium dodecyl sulfate, of about 51,000, 24,000, and 9–10,000. Coomassie blue stain intensities of the subunits on acrylamide gels suggest that they are present in NADH dehydrogenase in equimolar amounts. However, summation of the apparent Mr values of the dodecyl sulfate-treated subunits appears to overestimate the molecular weight of the native enzyme. The amino acid compositions of NADH dehydrogenase and of each of the isolated and purified subunits have been determined. NADH dehydrogenase catalyzes the oxidation of NADH and NADPH by quinones, ferric compounds, and NAD (3-acetylpyridine adenine dinucleotide was used). All the activities of NADH dehydrogenase are greatly stimulated by addition of guanidine (up to 150 mm), alkylguanidines, arginine, and arginine methyl ester to the assay medium. Phosphoarginine had no effect. These results pointed to the importance of the positively charged guanido group, which appears to interact with and neutralize the negative charges on NAD(P)H and thereby allow for better enzyme-substrate interaction. In the absence of guanidine, NADPH is essentially unoxidized by the enzyme at pH values above 6.0. However, both NADPH dehydrogenase and NADPH → NAD transhydrogenase activities increase dramatically as the assay pH is lowered below pH = 6. Since the pK of the 2′-phosphate of NADPH is 6.1, it appears that the above pH effect is related to protonation of the 2′-phosphate, thus rendering NADPH a closer electronic analog of NADH, which is the primary substrate of the enzyme.  相似文献   

14.
NADPH oxidase activity, in addition to NADH oxidase activity, has been shown to be present in the respiratory chain of Corynebacterium glutamicum. In this study, we tried to purify NADPH oxidase and NADH dehydrogenase activities from the membranes of C. glutamicum. Both the enzyme activities were simultaneously purified in the same fraction, and the purified enzyme was shown to be a single polypeptide of 55 kDa. The N-terminal sequence of the enzyme was consistent with the sequence deduced from the NADH dehydrogenase gene of C. glutamicum, which has been sequenced and shown to be a homolog of NADH dehydrogenase II. In addition to high NADH-ubiquinone-1 oxidoreductase activity at neutral pH, the purified enzyme showed relatively high NADPH oxidase and NADPH-ubiquinone-1 oxidoreductase activities at acidic pH. Thus, NADH dehydrogenase of C. glutamicum was shown to be rather unique in having a relatively high reactivity toward NADPH.  相似文献   

15.
A commercially available continuous electroelution system has been used to separate and purify low molecular weight DNA fragments from polyacrylamide gels. This method has several advantages over previously reported methods for the recovery of DNA fragments from polyacrylamide gels. This technique, which gives very high recovery rates (80-95%), can be carried out on a relatively large scale and in a way that is not labour intensive. Data are presented for the purification of DNA fragments with molecular weights in the range 1-4 x 10(5) (200-700 base-pairs), although the method is also applicable to larger molecular weight DNA fragments, RNAs and proteins.  相似文献   

16.
部分小麦高分子量谷蛋白亚基组成分析   总被引:6,自引:0,他引:6  
利用十二烷基硫酸钠聚丙烯胺凝胶电泳(SDS-PAGE)分析了85个小麦材料的高分子量谷蛋白亚基的构成,其结果表明:(1)目前生产中应用的优质小麦品种,大部分具有1A上的优质亚基1,1B上的14+15/17+18或1D上的5+10,个别品种还同时聚合有1A,1B,1D上的优质亚基;(2)在所分析的28个八倍体小偃麦中,多数材料含有1,2^*和5+10等优质亚基;(3)在本实验室创造的材料中,来源于中间偃麦草和普通小麦杂交的后代材料中大部分具有14+15亚基。此外,个别种质材料还含有Payne亚基命名系统中未命名的一些稀有的高分子量谷蛋白亚基。  相似文献   

17.
Calpastatin is an endogenous inhibitor of calpain, which has been implicated in various physiological and pathological processes. In the present study we determined the molecular and inhibitory properties of HMWCaMBP, calpastatin I, and calpastatin II. Western blot analysis with antibodies raised against either full length HMWCaMBP or internal peptides that are common to all isoforms showed that all three homologs have common antigenic epitopes. However, additional Western blot analysis with N-terminal specific antibodies showed that all three proteins are different at the N-terminal end. HMWCaMBP is clearly different from two other homologues, calpastatin I and II, at the N-terminal end. In addition, HMWCaMBP also showed the same affinities for m-calpain as calpastatin I and calpastatin II. Our findings suggest that HMWCaMBP is the homolog of calpastatin and may be a CaM-binding form of calpastatin.  相似文献   

18.
1. Human high molecular weight (HMW)-kininogen was highly purified from human plasma by chromatographies on QAE-Sephadex A-50 and CM-Sephadex C-50. Human HMW-kininogen thus purified was a mixture of a single chain and a disulfide-linked pair of chains. Human HMW-kininogen is an acidic glycoprotein having a molecular weight of 120,000. The amino acid composition of human HMW-kininogen is quite similar to that of bovine HMW-kininogen. 2. We investigated whether the liberation of kinin from human HMW-kininogen by human plasma kallikrein was accompanied by liberation of histidine-rich fragments, as observed with bovine HMW-kininogen (Han et al. (1975) J. Biochem. 77, 55--68). After prolonged incubation of human HMW-kininogen and human plasma kallikrein followed by gel-filtration on Sephadex G-50, a fragment of molecular weight 8,000 was isolated together with bradykinin. However, the histidine content of the fragment was not as high as that in the bovine fragments. Most of the histidine in human HMW-kininogen was recovered in the kinin-free protein, and the light chain of kinin-free protein was found to be rich in histidine compared with the heavy chain. These results suggest that the histidine-rich sequence in human HMW-kininogen is not released by the action of human plasma kallikrein, but remains bound to the light chain of kinin-free protein.  相似文献   

19.
Restriction enzyme digests of DNA from nullisomic-tetrasomic and intervarietal chromosome substitution lines of wheat were probed with a high molecular weight (HMW) glutenin cDNA. Three restriction endonucleases were used to investigate restriction-fragment differences among five wheat varieties. The results suggest that the hybridizing fragments contain single gene copies and permit the identification of the subunit encoded by each gene. Restriction-fragment variation associated with previously established allelic differences between varieties was observed. Also, there is a clear relationship between the electrophoretic mobility of a HMW subunit and the length of the central repetitive section of the gene encoding it. These results are discussed with reference to the evolution of the HMW glutenin gene family and the uses of restriction-fragment variation in plant breeding and genetics.N.P.H. was supported by a MRC Training Fellowship in Recombinant DNA Technology and a grant from the Perry Foundation. D.B. is supported by EEC Contract GBI-4-027-UK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号