首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incentivizing carbon storage can be a win‐win pathway to conserving biodiversity and mitigating climate change. In savannas, however, the situation is more complex. Promoting carbon storage through woody encroachment may reduce plant diversity of savanna endemics, even as the diversity of encroaching forest species increases. This trade‐off has important implications for the management of biodiversity and carbon in savanna habitats, but has rarely been evaluated empirically. We quantified the nature of carbon‐diversity relationships in the Brazilian Cerrado by analyzing how woody plant species richness changed with carbon storage in 206 sites across the 2.2 million km2 region at two spatial scales. We show that total woody plant species diversity increases with carbon storage, as expected, but that the richness of endemic savanna woody plant species declines with carbon storage both at the local scale, as woody biomass accumulates within plots, and at the landscape scale, as forest replaces savanna. The sharpest trade‐offs between carbon storage and savanna diversity occurred at the early stages of carbon accumulation at the local scale but the final stages of forest encroachment at the landscape scale. Furthermore, the loss of savanna species quickens in the final stages of forest encroachment, and beyond a point, savanna species losses outpace forest species gains with increasing carbon accumulation. Our results suggest that although woody encroachment in savanna ecosystems may provide substantial carbon benefits, it comes at the rapidly accruing cost of woody plant species adapted to the open savanna environment. Moreover, the dependence of carbon‐diversity trade‐offs on the amount of savanna area remaining requires land managers to carefully consider local conditions. Widespread woody encroachment in both Australian and African savannas and grasslands may present similar threats to biodiversity.  相似文献   

2.
A popular way to suggest a regional influence on local species diversity has been to plot local versus regional diversity. The form of these curves has been interpreted as evidence for or against "community saturation" due to species interactions. This interpretation, however, is unwarranted. Using the concepts of α, β and γ diversity, I show that local–regional richness curves are determined by the way total diversity is partitioned between its α and β components, which itself is a matter of scale. Changing the scale of the local community amounts to changing the scale at which the heterogeneity of the interactions between organisms and their environment manifests itself, and hence the balance between α and β diversity. Community saturation may occur because of physical limitations, but there are no theoretical grounds for the belief that species interactions set an absolute upper limit to diversity at any scale. A distinction between different meanings of the concept of "saturation" is proposed to clarify this issue. I argue that the challenge now is to understand the relationship between α and β diversity at multiple scales, and the processes that determine it.  相似文献   

3.
Woody plant encroachment alters the structure and function of rangeland ecosystems. The objective of this study was to explore the association between woody plant encroachment and various ecosystem properties (i.e. vascular plant species diversity, richness, evenness, soil organic matter, herbaceous biomass, leaf litter and bare ground cover) in a semiarid savanna rangeland, and also to test whether the relationships were influenced by woody species composition, elevation and site. We carried out a vegetation survey in four rangeland sites in the lower Omo region of southwestern Ethiopia, and regressed each one of the ecosystem properties, separately, against woody plant density, elevation and site using multiple linear regressions. We found that vascular plant species diversity, richness and evenness increased with woody plant density, most likely due to increased spatial heterogeneity and soil microclimate improvement. Bare ground cover increased significantly, whereas herbaceous biomass and soil organic matter did not respond to woody encroachment. In a subsequent investigation, we used a redundancy analysis to assess whether ecosystem properties were influenced by the identity of encroaching woody plant species. Species diversity and richness responded positively to Lannea triphylla, whereas leaf litter responded positively to Grewia tenax and G. villosa. Our findings suggest that woody plant encroachment in a semiarid rangeland does alter ecosystem properties. However, its impact is highly variable, influenced by a set of factors including the level of encroachment and identity of encroaching woody species.  相似文献   

4.
Exotic plants pose a threat to restoration success in post‐agricultural bottomlands, but little information exists on their dynamics during succession of actively restored sites. We hypothesized that exotic assemblages would establish during succession and that their compositional trends during succession time would mirror those published for native species in other systems, with an early peak in herbaceous richness followed by a decline as woody species establish. In the summer of 2008, we sampled 16 sites across an 18‐year chronosequence of restored forests, with an additional four mature forest stands for comparison, within the Cypress Creek NWR, Illinois, U.S.A. We identified all vascular plant species and quantified canopy openness at three canopy strata, and soil texture and chemistry. Trends in exotic assemblages were significantly correlated with canopy openness at all strata. Richness of exotic and native herbaceous species was related to stand age and consistent with a Weibull regression model. Native and exotic herbaceous cover followed an exponential decay model. Woody native richness over time conformed to a logistic model; woody exotics exhibited no relationship with stand age and were present in sites of all ages. Our results indicate that although their rates of decline differ, herbaceous exotics and natives exhibit similar successional dynamics; therefore, herbaceous exotics may not pose a lasting threat to restoration success in reforested floodplains. Woody exotics can establish across a range of successional stages and persist under closed canopy conditions. Bottomland restorations are vulnerable to the invasion and expansion of exotic plant species even after canopy closure.  相似文献   

5.
It is commonly assumed that variation in abiotic site conditions influences the number of niches, which in turn affects the potential species richness in an area. Based on theoretical considerations, abiotic variation is often used as an estimator of species richness at broad scales, while at finer landscape scales the diversity of habitat types is used. However, habitat estimators assume the landscape to be composed of discrete, homogeneous patches with sharp boundaries, and such a concept is hard to apply in gradient-dominated landscapes. The aim of this study was therefore to investigate the influence of topographic variability (TV) on species richness at the landscape level (gamma (γ) diversity) and on its components (alpha (α) and beta (β) diversity) at microsite and habitat group levels. Using floristic data from 12 "landscapes" of 1 km2 we investigated the influence on diversity components of two simple and one complex measures of TV. While the standard deviation (SD) of altitude explained a high proportion of the variation in γ diversity (linear regression model, R2=0.63), the complex measure, SD of solar radiation explained it even better (R2=0.82). There were strong effects of TV on α and β diversity components at the microsite level, but only marginal increases of the diversity components at the habitat level. Further analyses revealed that the missing increase of the habitat level components was caused by differences between habitat groups and that only grassland diversity components increased significantly with TV. We conclude that TV at a landscape scale has strong effects on niche or microsite diversity and is an appropriate estimator of relative species richness in landscapes that are topographically heterogeneous and gradient dominated.  相似文献   

6.
To test the hypotheses that fruit-feeding nymphalid butterflies are randomly distributed in space and time, a community of fruit-feeding nymphalid butterflies was sampled at monthly intervals for one year by trapping 6690 individuals of 130 species in the canopy and understory of four forest habitats: primary, higraded, secondary, and edge. The overall species abundance distribution was well described by a lognormal distribution. Total species diversity (γ-diversity) was partitioned into additive components within and among community subdivisions (α-diversity and β-diversity) in vertical, horizontal and temporal dimensions. Although community subdivisions showed high similarity (1 —β-diversity/γ-diversity), significant β-diversity existed in each dimension. Individual abundance and observed species richness was lower in the canopy than in the understory. However, rarefaction analysis and species accumulation curves revealed that canopy had higher species richness than understory. Observed species richness was roughly equal in all habitats, but individual abundance was much greater in edge, largely due to a single, specialist species. Rarefaction analysis and species accumulation curves showed that edge had significantly lower species richness than all other habitats. Samples from a single habitat, height and time contained only a small fraction of the total community species richness. This study demonstrates the feasibility, and necessity, of large-scale, long-term sampling in multiple dimensions for accurately measuring species richness and diversity in tropical forest communities. We discuss the importance of such studies in conservation biology.  相似文献   

7.
Additive partitioning of species diversity is widely applicable to different kinds of sampling regimes at multiple spatial and temporal scales. In additive partitioning, the diversity within and among samples ( α and β ) is expressed in the same units of species richness, thus allowing direct comparison of α and β . Despite its broad applicability, there are few demonstrated linkages between additive partitioning and other approaches to analysing diversity. Here, we establish several connections between diversity partitions and patterns of habitat occupancy, rarefaction, and species–area relationships. We show that observed partitions of species richness are equivalent to sample-based rarefaction curves, and expected partitions from randomization tests are approximately equivalent to individual-based rarefaction. Additive partitions can also be applied to species–area relationships to determine the relative contributions of factors influencing the β -diversity among habitat fragments.  相似文献   

8.
Restoration of native vegetation often focuses on the canopy layer species, with the assumption that regeneration of the understory elements will occur as a consequence. The goal of this study was to assess the influence of canopy restoration on the composition and abundance of understory plant species assemblages along riparian margins in the Hunter Valley, NSW, Australia. We compared the floristic composition (richness, abundance, and diversity) of understory species between nonrevegetated (open) and canopy revegetated plots across five sites. A number of other factors that may also influence understory vegetation, including soil nutrients, proximity to main channel, and light availability, were also measured. We found that sites where the canopy had been restored had lower exotic species richness and abundance, as well as higher native species cover, but not native species richness, compared with open sites. Multivariate analysis of plots based on plant community composition showed that revegetated sites were associated with lower total species diversity, light availability, and exotic cover. This study has found that the restoration of the canopy layer does result in lower exotic species richness and cover, and higher native species cover and diversity in the understory, a desirable restoration outcome. Our results provide evidence that restoration of native canopy species may facilitate restoration of native understory species; however, other interventions to increase native species richness of the understory should also be considered as part of management practice.  相似文献   

9.
Aim  Evidence is accumulating of a general increase in woody cover of many savanna regions of the world. Little is known about the consequences of this widespread and fundamental ecosystem structural shift on biodiversity.
Location  South Africa.
Methods  We assessed the potential response of bird species to shrub encroachment in a South African savanna by censusing bird species in five habitats along a gradient of increasing shrub cover, from grassland/open woodland to shrubland dominated by various shrub species. We also explored historical bird species population trends across southern Africa during the second half of the 20th century to determine if any quantifiable shifts had occurred that support an ongoing impact of shrub encroachment at the regional scale.
Results  At the local scale, species richness peaked at intermediate levels of shrub cover. Bird species composition showed high turnover along the gradient, suggesting that widespread shrub encroachment is likely to lead to the loss of certain species with a concomitant decline in bird species richness at the landscape scale. Finally, savanna bird species responded to changes in vegetation structure rather than vegetation species composition: bird assemblages were very similar in shrublands dominated by Acacia mellifera and those dominated by Tarchonanthus camphoratus .
Main conclusions  Shrub encroachment might have a bigger impact on bird diversity in grassland than in open woodland, regardless of the shrub species. Species recorded in our study area were associated with historical population changes at the scale of southern Africa suggesting that shrub encroachment could be one of the main drivers of bird population dynamics in southern African savannas. If current trends continue, the persistence of several southern African bird species associated with open savanna might be jeopardized regionally.  相似文献   

10.
Most grassland restorations continue to fall short of achieving diversity levels found in reference ecosystems due primarily to establishment methods and species pool limits, and a diversity of metrics may be needed to assess how different restoration methods compare to reference sites. We addressed the extent to which 17 Midwest North American grassland reference systems and 18 restorations represent a compositional gradient, how hierarchical alpha, beta, and gamma diversity vary across this gradient, and how reference ecosystems and restorations differ in functional group diversity. Hierarchical cluster analysis separated reference and restoration sites groups based on alpha and gamma scales. Both were significantly correlated with species richness gradients at nonmetric multidimensional scaling ordination axes and indicator species. Most metrics were significantly correlated, and reference sites had significantly greater diversity than restorations at multiple scales. Reference sites also differed due to the absence of a subset of species from sites with disturbance history and restorations differed in response to restoration methods. Restorations using repeated establishment events from larger species pools achieved reference site alpha diversity and had greater representation of species that characterize undisturbed reference sites. Restorations using a single establishment event resembled disturbed reference sites. However, all restorations represented a subset of reference sites, including functional group diversity. As a result, they fail to conserve rare species that occur among reference sites and may lack temporal stability. Representation of rare species among restorations would help meet regional conservation needs without increasing alpha diversity.  相似文献   

11.
The biotic resistance theory relates invader success to species richness, and predicts that, as species richness increases, invasibility decreases. The relationship between invader success and richness, however, seems to be positive at large scales of analysis, determined by abiotic constraints, and it is to be expected that it is negative at small scales, because of biotic interactions. Moreover, the negative relationship at small scales would be stronger within species of the same functional group, because of having similar resource exploitation mechanisms. We studied the relationship between the cover of a worldwide invader of grasslands, Hieracium pilosella L., and species richness, species diversity and the cover of different growth forms at two different levels of analysis in 128 sites during the initial invasion process in the Fuegian steppe, Southern Patagonia, Argentina. At regional level, the invader was positively correlated to total (r = 0.28, P = 0.003), exotic (r = 0.273, P = 0.004), and native species richness (r = 0.210, P = 0.026), and to species diversity (r = 0.193, P = 0.041). At community level, we found only a weak negative correlation between H. pilosella and total richness (r = ?0.426, P = 0.079) and diversity (r = ?0.658, P = 0.063). The relationship between the invader and other species of the same growth form was positive both at regional (r = 0.484, P < 0.001) and community (r = 0.593, P = 0.012) levels. Consequently, in the period of establishment and initial expansion of this exotic species, our results support the idea that invader success is related to abiotic factors at large scales of analysis. Also, we observed a possible sign of biotic constraint at community level, although this was not related to the abundance of species of the same growth form.  相似文献   

12.
Invasions of woody species into grasslands abandoned by agriculture are a global phenomenon, but their effects on diversity of other taxa have been rarely investigated across both regional and local scales. We quantified how shrub encroachment affected the activity, composition, and diversity of ant communities in managed and abandoned grasslands in western Carpathians of Central Europe across four regions and four shrub encroachment stages in each region. We surveyed ant communities on 48 sites in total, with each encroachment stage replicated three times in each region and twelve times overall. We used pitfall traps to sample ants over three years (2008, 2009, 2011) and identified 9,254 ant workers belonging to 33 species in total. Although the epigaeic activity and composition of ant communities varied with region, abandoned grasslands supported a greater species richness of ants than managed grasslands regardless of the region, and especially so in more advanced shrub encroachment stages. Since the woody colonization within grasslands was moderate even in the advanced encroachment stages (on average ~40 % of grassland colonized by woody species), it allowed coexistence of forest specialists (e.g. Temnothorax crassispinus) with species typical of open grasslands, thus increasing overall ant diversity. Managed grasslands were not only less species rich compared to abandoned grasslands, but they were characterized by different species (e.g. Lasius niger, Myrmica rugulosa). The differences in ant communities between managed and abandoned grasslands are likely to cause differences in ecological functions mediated by ants (e.g. predation of arthropods or plant seed dispersal).  相似文献   

13.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

14.
Patrick L. Lilley  Mark Vellend 《Oikos》2009,118(9):1373-1382
Recent research has proposed a scale-dependence to relationships between native diversity and exotic invasions. At fine spatial scales, native–exotic richness relationships should be negative as higher native richness confers resistance to invasion. At broad scales, relationships should be positive if natives and exotics respond similarly to extrinsic factors. Yet few studies have examined both native and exotic richness patterns across gradients of human influence, where impacts could affect native and exotic species differently. We examined native–exotic richness relationships and extrinsic drivers of plant species richness and distributions across an urban development gradient in remnant oak savanna patches. In sharp contrast to most reported results, we found a negative relationship at the regional scale, and no relationship at the local scale. The negative regional-scale relationship was best explained by extrinsic factors, surrounding road density and climate, affecting natives and exotics in opposite ways, rather than a direct effect of native on exotic richness, or vice versa. Models of individual species distributions also support the result that road density and climate have largely opposite effects on native and exotic species, although simple life history traits (life form, dispersal mode) do not predict which habitat characteristics are important for particular species. Roads likely influence distributions and species richness by increasing both exotic propagule pressure and disturbance to native species. Climate may partially explain the negative relationship due to differing climatic preferences within the native and exotic species pools. As gradients of human influence are increasingly common, negative broad-scale native–exotic richness relationships may be frequent in such landscapes.  相似文献   

15.
Separating the threats that habitat loss and habitat fragmentation pose to biodiversity is challenging because these processes usually occur simultaneously. Additionally, their importance may be underestimated due to time-delayed extinction. In central Texas savannas, woody plant encroachment reduces the amount of habitat available to herbaceous species while fragmenting remaining habitat. We examined the relationships between present species richness and present and past habitat amount and fragmentation (measured as fractal dimension) using a series of aerial photographs taken over nearly 60 years. We show that woody plant encroachment, a common phenomenon in savannas worldwide, reduces the diversity of herbaceous vegetation through both habitat loss and fragmentation. Habitat loss has the strongest impact on species richness over short time spans and small spatial scales in these savannas. Habitat fragmentation, however, has the strongest impact over longer time spans and larger spatial scales and generates long-term extinction debts. We also demonstrate that examining habitat loss and habitat fragmentation across different time periods and at different spatial scales is essential for understanding their joint and individual effects on plant community composition.  相似文献   

16.
Understanding the factors that drive species richness and composition at multiple scales is of crucial importance for conservation. Here we evaluated how habitat heterogeneity—at the local and landscape scales—affects the diversity of ants in the Brazilian Cerrado. The Cerrado is a biodiversity hotspot that is characterized as a mosaic of habitats, including savannas of variable structure (the dominant vegetation), grasslands, and forests. We sampled ground-dwelling ants in four habitats, representing a gradient of increasing tree cover and decreasing grass cover. Twelve sites, distributed along two degrees of latitude, were sampled. Our sampling revealed a highly diverse and patchily distributed fauna comprising 150 species (from 44 genera), of which nearly 40% were found in only one site. On average, we found fewer species in the least structurally complex habitat. However, there was relatively little variation in species density among the remaining habitats despite strong differences in vegetation structure among them. Ant species composition varied markedly among sites and such differences were related to variations in vegetation structure but not to inter-site distances (latitude). Similar results were obtained when overall ant species richness (γ diversity) was partitioned additively into three components: α1 (diversity within sampling sites), β1 (diversity among sites within the same habitat type), and β2 (diversity among sites from different habitats). The β2 component contributed much more to γ diversity than did the remaining diversity components, indicating that conservation of the Cerrado ant fauna depends on the maintenance of habitat diversity.  相似文献   

17.
Restoration efforts often focus on plants, but additionally require the establishment and long‐term persistence of diverse groups of nontarget organisms, such as bees, for important ecosystem functions and meeting restoration goals. We investigated long‐term patterns in the response of bees to habitat restoration by sampling bee communities along a 26‐year chronosequence of restored tallgrass prairie in north‐central Illinois, U.S.A. Specifically, we examined how bee communities changed over time since restoration in terms of (1) abundance and richness, (2) community composition, and (3) the two components of beta diversity, one‐to‐one species replacement, and changes in species richness. Bee abundance and raw richness increased with restoration age from the low level of the pre‐restoration (agricultural) sites to the target level of the remnant prairie within the first 2–3 years after restoration, and these high levels were maintained throughout the entire restoration chronosequence. Bee community composition of the youngest restored sites differed from that of prairie remnants, but 5–7 years post‐restoration the community composition of restored prairie converged with that of remnants. Landscape context, particularly nearby wooded land, was found to affect abundance, rarefied richness, and community composition. Partitioning overall beta diversity between sites into species replacement and richness effects revealed that the main driver of community change over time was the gradual accumulation of species, rather than one‐to‐one species replacement. At the spatial and temporal scales we studied, we conclude that prairie restoration efforts targeting plants also successfully restore bee communities.  相似文献   

18.
Woody plant encroachment of savanna ecosystems has been related to altered disturbance regimes, mainly fire suppression and herbivore exclusion. In contrast, neighbourhood interactions among resident and colonising woody species have received little attention, despite their likely influence on the pattern and rate of tree establishment. We examined how resident palm trees (Butia yatay) and established adults of two riparian forest tree species (Allophylus edulis and Sebastiania commersoniana) influenced seed arrival and seedling performance of the latter two species in a humid savanna of east-central Argentina. Seed traps and seedlings of both riparian species were placed in herbaceous openings, and beneath palm, conspecific and heterospecific adult trees in two unburned savanna patches, and were monitored for 2 years. Only seeds of the bird-dispersed Allophylus arrived in palm microsites, yet survival of Allophylus seedlings near adult palms was limited by animal damage through trampling and burrowing, a non-trophic mechanism of apparent competition. Seeds of both riparian species dispersed into conspecific microsites, although adult trees selectively reduced growth of conspecific seedlings, a pattern consistent with the “escape hypothesis”. Further, survival of Sebastiania increased in the moister Allophylus microsites, suggesting a one-way facilitative interaction between woody colonisers. Our results indicate that dispersal facilitation by resident savanna trees may be critical to riparian species invasion after fire suppression. Distance-dependent effects of conspecific and heterospecific adult trees could contribute to shape the subsequent dynamics of woody seedling establishment. Overall, we show that indirect interactions can play a prominent role in savanna encroachment by non-resident woody species.  相似文献   

19.
Restored grasslands comprise an ever‐increasing proportion of grasslands in North America and elsewhere. However, floristic studies of restored grasslands indicate that our ability to restore plant communities is limited. Our goal was to assess the effectiveness of restoration seeding for recovery of key plant community components on former exotic, cool‐season pastures using a chronosequence of six restoration sites and three nearby remnant tallgrass prairie sites in West‐Central Iowa. We assessed trends in Simpson's diversity and evenness, richness and abundance of selected native and exotic plant guilds, and mean coefficient of conservatism (mean C). Simpson's diversity and evenness and perennial invasive species abundance all declined with restoration site age. As a group, restoration sites had greater richness of native C3 species with late phenology, but lower richness and abundance of species with early phenology relative to remnant sites. Total native richness, total native abundance (cover), mean C, and abundance of late phenology C3 plants were similar between restoration and remnant sites. Observed declines in diversity and evenness with restoration age reflect increases in C4 grass abundance rather than absolute decreases in the abundance of perennial C3 species. In contrast to other studies, restoration seeding appears to have led to successful establishment of tallgrass prairie species that were likely to be included in seeding mixtures. While several floristic measures indicate convergence of restoration and remnant sites, biodiversity may be further enhanced by including early phenology species in seeding mixes in proportion to their abundance on remnant prairies.  相似文献   

20.
The factors responsible for maintaining diverse groundcover plant communities of high conservation value in frequently burned wet pine savannas are poorly understood. While most management involves manipulating extrinsic factors important in maintaining species diversity (e.g., fire regimes), most ecological theory (e.g., niche theory and neutral theory) examines how traits exhibited by the species promote species coexistence. Furthermore, although many ecologists focus on processes that maintain local species diversity, conservation biologists have argued that other indices (e.g., phylogenetic diversity) are better for evaluating assemblages in terms of their conservation value. I used a null model that employed beta‐diversity calculations based on Raup–Crick distances to test for deterministic herbaceous species losses associated with a 65‐year chronosequence of woody species encroachment within each of three localities. I quantified conservation value of assemblages by measuring taxonomic distinctness, endemism, and floristic quality of plots with and without woody encroachment. Reductions in herb species richness per plot attributable to woody encroachment were largely stochastic, as indicated by a lack of change in the mean or variance in beta‐diversity caused by woody encroachment in the savannas studied here. Taxonomic distinctness, endemism, and floristic quality (when summed across all species) were all greater in areas that had not experienced woody encroachment. However, when corrected for local species richness, only average endemism and floristic quality of assemblages inclusive of herbs and woody plants were greater in areas that had not experienced woody encroachment, due to the more restricted ranges and habitat requirements of herbs. Results suggest that frequent fires maintain diverse assemblages of fire‐dependent herb species endemic to the region. The stochastic loss of plant species, irrespective of their taxonomic distinctness, to woody encroachment suggests that the relevance of niche partitioning or phylogenetic diversity to the management of biodiversity in wet pine savannas is minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号