首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS. Ultrastructure of cysts of Naegleria gruberi, Naegleria fowleri, and Naegleria jadini was compared by transmission electron microscopy. Pores in the cyst wall were observed in all 3 species. In N. gruberi they were surrounded by a collar and sealed with a relatively large mucoid plug; no such collar was seen around the pores in the other 2 species, in which the plug was smaller than that in N. gruberi. An electron-dense plaque serving as an additional pore closure was present in all 3 species. In N. gruberi, the cyst wall consisted of an inner thick and an outer thin layer; however, only the inner component was present in cysts of N. fowleri and N. jadini, which had a smooth appearance. At the ultrastructural level, excystment of N. fowleri involved digestion of the mucoid plug and emergence of the trophozoite through the pore. Some digestion of the cyst wall also appeared to take place during excystment.  相似文献   

2.
The human pathogenic amoeboflagellate Naegleria fowleri and the nonpathogenic species N. gruberi can be cultivated axenically but usually in different media. Naegleria fowleri 6088 has been adapted to grow in Balamuth H-4 medium, usually used to propagate N. gruberi nB81. and nB81 has been adapted to grow in supplemented Nelson's medium, usually used to propagate N. fowleri. N. gruberi nB81. grown in either medium, enflagellated 135 to 150 min after subculture to non-nutrient amoeba saline, whereas 6088 required 225 min. Naegleria gruberi nB81 grown in either medium was agglutinated by 100 ug concanavalin A/ml, whereas N. fowleri 6088 was not. Naegleria fowleri and N. gruberi grown in Nelson's medium became rounded to a greater extent upon chilling at 5° C and remained rounded longer than Naegleria grown in Balamuth medium. The specificity of the surface antigens was an inherent characteristic of each species and not dependent upon the propagating medium. but Naegleria grown in Nelson's medium was agglutinated more reproducibly and more effectively by antiserum. N. gruberi was somewhat more resistant to acriflavine, actinomycin D, cycloheximide, or tetracycline than N. fowleri, regardless of the culture medium. Naegleria fowleri 6088 grown in Nelson's medium, however, was more resistant to actinomycin D, daunomycin. mithramycin. sulfamethoxazole, or tyrocidine than 6088 grown in Balamuth medium. There are limitations on the validity of comparisons of N. fowleri and N. gruberi based upon cultures grown in different media.  相似文献   

3.
ABSTRACT. The purpose of this research was to determine whether mice could be protected from lethal challenge with Naegleria fowleri by prior intranasal exposure to pathogenic and nonpathogenic Naegleria. Mortality ranged from 0 to 100% for mice inoculated intranasally (i.n.) with 5 × 103 amebae of 13 human isolates of N. fowleri. Mice were immunized and challenged i.n. using live amebae of strains of low, medium, and high virulence. The greatest protection against lethal challenge was afforded by three immunizing doses of 103 amebae per dose of the strain of medium virulence. Nonpathogenic N. gruberi also was used to immunize mice i.n. against lethal challenge with N. fowleri. Protection was greater following immunization with N. gruberi than it was after immunization with N. fowleri, suggesting that nonpathogenic N. gruberi may be a better immunogen in protecting mice against lethal naeglerial challenge.  相似文献   

4.
Free-living Naegleria fowleri leads to a fatal infection known as primary amebic meningoencephalitis in humans. Previously, the target cell death could be induced by phagocytic activity of N. fowleri as a contact-dependent mechanism. However, in this study we investigated the target cell death under a non-contact system using a tissue-culture insert. The human microglial cells, U87MG cells, co-cultured with N. fowleri trophozoites for 30 min in a non-contact system showed morphological changes such as the cell membrane destruction and a reduction in the number. By fluorescence-activated cell sorter (FACS) analysis, U87MG cells co-cultured with N. fowleri trophozoites in a non-contact system showed a significant increasse of apoptotic cells (16%) in comparison with that of the control or N. fowleri lysate. When U87MG cells were co-cultured with N. fowleri trophozoites in a non-contact system for 30 min, 2 hr, and 4 hr, the cytotoxicity of amebae against target cells was 40.5, 44.2, and 45.6%, respectively. By contrast, the cytotoxicity of non-pathogenic N. gruberi trophozoites was 10.2, 12.4, and 13.2%, respectively. These results suggest that the molecules released from N. fowleri in a contact-independent manner as well as phagocytosis in a contact-dependent manner may induce the host cell death.  相似文献   

5.
ABSTRACT Using restriction enzyme analysis, mitochondrial DNA fragment patterns from seven strains of pathogenic and nonpathogenic Naegleria and one strain of Vahlkampfia were compared to estimate nucleotide sequence divergence. Significantly high levels of estimated genetic variation between strains of N. gruberi, N. fowleri, and N. jadini support the current taxonomic level of the individual Naegleria species and suggest a distinct phylogeny for each group. Naegleria lovaniensis, strain TS, was shown to have significant nucleotide sequence homology with N. gruberi, strain EGs, suggesting that the two groups share a close taxonomic relationship. The pathogenic strain MB-41 of N. fowleri exhibited distinct genetic divergence from the highly homologous, pathogenic strain Nf66 and the drug-cured strain 6088. Morphologically distinct strains EGs and 1518/la of N. gruberi exhibited significantly large sequence divergence consistent with a more distant taxonomic relationship. Amoebae from the genus Vahlkampfia expressed genetic similarity with strains of N. gruberi.  相似文献   

6.
ABSTRACT. Naegleria fowleri amebae, but not those of N. australiensis, N. gruberi, or N. lovaniensis, demonstrated enhanced motility when placed in proximity to mammalian cells. Amebae of nonpathogenic species of Naegleria, however, were more motile in cell culture medium than the amebae of N. fowleri. The locomotory response of highly pathogenic mouse-passaged N. fowleri amebae to nerve cells was greater than axenically cultured amebae. The enhanced mobility elicited by whole nerve cells or disrupted nerve cells was not directed migration but chemokinetic. Naegleria fowleri responded to disrupted neuroblastoma cells more vigorously than to disrupted African green monkey kidney (Vero) cells.  相似文献   

7.
Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process.  相似文献   

8.
Naegleria fowleri is a unicellular eukaryote causing primary amoebic meningoencephalitis, a neuropathic disease killing 99% of those infected, usually within 7–14 days. Naegleria fowleri is found globally in regions including the US and Australia. The genome of the related nonpathogenic species Naegleria gruberi has been sequenced, but the genetic basis for N. fowleri pathogenicity is unclear. To generate such insight, we sequenced and assembled the mitochondrial genome and a 60‐kb segment of nuclear genome from N. fowleri. The mitochondrial genome is highly similar to its counterpart in N. gruberi in gene complement and organization, while distinct lack of synteny is observed for the nuclear segments. Even in this short (60‐kb) segment, we identified examples of potential factors for pathogenesis, including ten novel N. fowleri‐specific genes. We also identified a homolog of cathepsin B; proteases proposed to be involved in the pathogenesis of diverse eukaryotic pathogens, including N. fowleri. Finally, we demonstrate a likely case of horizontal gene transfer between N. fowleri and two unrelated amoebae, one of which causes granulomatous amoebic encephalitis. This initial look into the N. fowleri nuclear genome has revealed several examples of potential pathogenesis factors, improving our understanding of a neglected pathogen of increasing global importance.  相似文献   

9.
10.
ABSTRACT. Isoenyme electrophoresis of three different enzymes was used to compare 16 strains of vahlkampfiid amoebae and a strain identified as a slime mold. The strain designated as an Echinostelium sp. was found to be an isolate of Naegleria fowleri on the basis of zymogram type and other characters, confirming Cursons & Brown's similar conclusion drawn in 1975. The N. fowleri strains examined expressed the typical zymograms of the species. The N. gruberi strains in this study presented two distinctive groups of patterns that were different from the two previously reported types for N. gruberi. Each of the remaining species studied formed single distinctive groups by which they could be identified.  相似文献   

11.
A study of amebas of the genera Naegleria, Acanthamoeba, Polysphondylium, and Didymium shows that a cytopathogenic agent that is filterable and passageable is present only in the strains of the Naegleria whether they are obtained free-living from soil samples (N. gruberi) or as pathogens from humans (N. fowleri). The agents obtained from the different Naegleria strains are similar in amount and in their cytopathogenic interaction with chick cultures. The agent has characteristics that distinguish it from the known viruses.  相似文献   

12.
The completion of the genome project for Naegleria gruberi provides a unique insight into the metabolic capacities of an organism, for which there is an almost complete lack of experimental data. The metabolism of Naegleria seems to be extremely versatile, as can be expected for a free-living amoeboflagellate, but although considered to be fully aerobic, its genome also predicts important anaerobic traits. Other predictions are that carbohydrates are oxidised to carbon dioxide and water when oxygen is not limiting and that in the absence of oxygen the end-products will be succinate, acetate and minor quantities of ethanol and d-lactate. The hybrid mitochondrion/hydrogenosome has both cytochromes and an [Fe] hydrogenase, but seems to lack pyruvate-ferredoxin oxidoreductase. Genomic information also provides the possibility to identify drugs with a possible mode of action in the fatal primary amoebic meningoencephalitis caused by the closely related opportunistic pathogen Naegleria fowleri.  相似文献   

13.
In this study, 30 strains of the pathogenic free-living amoeba Naegleria fowleri were investigated by using the randomly amplified polymorphic DNA (RAPD) method. The present study confirmed our previous finding that RAPD variation is not correlated with geographical origin. In particular, Mexican strains belong to the variant previously detected in Asia, Europe, and the United States. In France, surprisingly, strains from Cattenom gave RAPD patterns identical to those of the Japanese strains. In addition, all of these strains, together with an additional French strain from Chooz, exhibited similarities to South Pacific strains. The results also confirmed the presence of numerous variants in Europe, whereas only two variants were detected in the United States. The two variants found in the United States were different from the South Pacific variants. These findings do not support the previous hypothesis concerning the origin and modes of dispersal of N. fowleri.  相似文献   

14.
The plasma membrane is essential in the pathogenicity of several microorganisms. However, to date, there are few studies related to the plasma membrane proteins in Naegleria fowleri; this amoeba produces a fatal disease called primary amoebic meningoencephalitis. In the present study, we analyzed the electrophoretic pattern of the membrane proteins of N. fowleri and compared it with the nonpathogenic N. lovaniensis and N. gruberi. We detected a 23-kDa protein (Nf23) present at a higher level in N. fowleri than in the nonpathogenic amoebae. The mass spectrometry analysis showed that the Nf23 protein has a sequence of 229 amino acids that corresponds to a membrane protein. The mRNA level of nf23 was overexpressed 4-fold and 40,000-fold in N. fowleri compared with N. lovaniensis and N. gruberi, respectively. Moreover, we found a 5-fold overexpression of nf23 in N. fowleri trophozoites recovered from mouse brains compared with trophozoites axenically cultivated. In addition, the cytopathic effect on Madin-Darby Canine Kidney cells coincubated with N. fowleri diminished in the presence of antibodies against Nf23; nevertheless, the nonpathogenic amoebae did not produce damage to the monolayer cells. These results suggest that the plasma membrane protein Nf23 is probably involved in the virulence of N. fowleri.  相似文献   

15.
SYNOPSIS. Ultraviolet microscopy and electron microscope autoradiography were used to study ribonucleoprotein in cysts of Naegleria gruberi. The absorption maximum for cysts is at 265 nm with little detectable absorption occurring at 295 nm. Pre-cystic trophozoites absorb less strongly than the cysts at 265 mm. Acridine orange staining indicated concentrations of ribose nucleic acid or ribonucleoprotein in the cytoplasm of young cysts. The dye stained discrete vesicles in the cytoplasm. Tritiated uridine and tritiated proline were used to follow changes in RN-protein at encystment. Label was incorporated into vesicles filled with ribosome-like particles. These are presumably the sites of acridine orange staining. Relatively little label was associated with the cyst cytoplasmic matrix; most of the silver grains lay over the nucleus and cytoplasmic organelles. The vesicles are believed to represent autophagosomal-type vacuoles with the contents derived from breakdown of organelles such as mitochondria. The path of label into the vesicles is via lysis of labeled cytoplasmic organelles. The RN-protein vesicles of Naegleria gruberi cysts are compared to the chromatoid bodies of Entamoeba invadens. It is concluded that, tho differences in detail are present, the role of the structures in the cysts is probably the same. They are a ready source of amino acids and ribosomes in a dedifferentiated or pool state to be used for synthetic reactions that accompany resumption of trophic existence.  相似文献   

16.
SYNOPSIS. Naegleria fowleri strains HB-1 and KUL, pathogenic for humans, Naegleria gruberi strain 1518/1e, and 3 strains (Vm1, LvH1, and LvH2) of Naegleria isolated from a body of water polluted with thermal effluents were compared in an attempt at specific identifications of the latter strains. The 3 environmental isolates were morphologically almost identical with N. fowleri and had almost the same temperature tolerance, although at 37 and 42 C the growth rates of LvH1 and LvH2 were higher than those of the human pathogen, N. fowleri, and of isolate Vm1, which was pathogenic for mice. Serologic examinations by indirect fluorescent antibody method revealed a very close relationship of the new isolates with the human pathogens. While Vm1 was indistinguishable from N. fowleri, LvH1 and LvH2 were not, when cross-absorbed antisera were used. Of all the strains examined, only the 2 LvH isolates were not inhibited by amphotericin B, while only N. gruberi was not inhibited by fumagillin. The cytopathic effect in Vero cell cultures suggested that the LvH strains could have a certain degree of virulence, although this was not confirmed by intranasal and intracerebral inoculations of mice. The cytopathic effects of the human pathogens and of the isolate pathogenic for mice were related to their virulence for mice. It is concluded that there exists an intermediate form between N. gruberi and N. fowleri, with a strong relationship to the latter species. We refer to such strains as nonpathogenic variants of N. fowleri. Further research is needed to reveal their place in the taxonomy.  相似文献   

17.
Pernin P. 1984. Isoenzyme patterns of pathogenic and nonpathogenic thermophilic Naegleria strains by isoelectric focusing. International Journal for Parasitology14: 459–465. The isoenzymatic patterns of different strains of Naegleria were studied by isoelectric focusing (I.E.F.) on polyacrylamide gels for seven enzymatic activities (leucine amino peptidase; lactate dehydrogenase; glucose 6 phosphate dehydrogenase; propionyl esterase; glucose phosphate isomerase; malate dehydrogenase; acid phosphatase), two of which (lactate dehydrogenase and glucose 6 phosphate dehydrogenase) were being investigated for the first time. The three pathogenic N. fowleri strains share a common pattern for most of the enzymes tested except for glucose 6 phosphate dehydrogenase, and thus form a very homogeneous species, while thermophilic nonpathogenic strains show more heterogeneity particularly for leucine amino peptidase and glucose 6 phosphate dehydrogenase.I.E.F. must be considered as a supplementary and rapid method for the identification of N. fowleri and as a powerful tool to demonstrate the complexity of different genera of free-living amoebas.  相似文献   

18.
The free-living amoeboflagellate genus Naegleria includes one pathogenic and two potentially pathogenic species (Naegleria fowleri, Naegleria italica, and Naegleria australiensis) plus numerous benign organisms. Monitoring of bathing water, water supplies, and cooling systems for these pathogens requires a timely and reliable method for identification, but current DNA sequence-based methods identify only N. fowleri or require full sequencing to identify other species in the genus. A novel closed-tube method for distinguishing thermophilic Naegleria species is presented, using a single primer set and the DNA intercalating dye SYTO9 for real-time PCR and melting-curve analysis of the 5.8S ribosomal DNA gene and flanking noncoding spacers (ITS1, ITS2). Collection of DNA melting data at close temperature intervals produces highly informative melting curves with one or more recognizable melting peaks, readily distinguished for seven Naegleria species and the related Willaertia magna. Advantages over other methods used to identify these organisms include its comprehensiveness (encompassing all species tested to date), simplicity (no electrophoresis required to verify the product), and sensitivity (unambiguous identification from DNA equivalent to one cell). This approach should be applicable to a wide range of microorganisms of medical importance.  相似文献   

19.
SYNOPSIS. Isoenzyme electrophoresis of 7 different enzyme systems was used to compare 24 strains of Naegleria fowleri and 6 strains of N. gruberi. The 30 strains could be grouped into 4 distinct categories based upon zymogram patterns. No interstrain band variation in all enzyme systems was demonstrated in pathogenic strains of N. fowleri. Three nonpathogenic high temperature-tolerant strains of Naegleria had similar zymograms. Four of the 5 remaining nonpathogenic Naegleria strains had no interstrain band variation. Based upon zymograms, the 22 pathogenic strains constitute a homogenous species. Similarly the high temperature-tolerant nonpathogenic strains formed a cohesive group. The remaining nonpathogenic strains could be separated into 2 groups.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号