首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-step method was developed for the purification of mesentericin Y105 (60% yield) from the culture supernatant of Leuconostoc mesenteroides Y105. The same procedure was successfully applied to the purification of five other anti-Listeria bacteriocins identified by mass spectrometry. Specific activities of the purified bacteriocins were compared.  相似文献   

2.
Pediocin PA-1 is a member of the class IIa bacteriocins, which show antimicrobial effects against lactic acid bacteria. To develop an improved version of pediocin PA-1, reciprocal chimeras between pediocin PA-1 and enterocin A, another class IIa bacteriocin, were constructed. Chimera EP, which consisted of the C-terminal half of pediocin PA-1 fused to the N-terminal half of enterocin A, showed increased activity against a strain of Leuconostoc lactis isolated from a sour-spoiled dairy product. To develop an even more effective version of this chimera, a DNA-shuffling library was constructed, wherein four specific regions within the N-terminal half of pediocin PA-1 were shuffled with the corresponding sequences from 10 other class IIa bacteriocins. Activity screening indicated that 63 out of 280 shuffled mutants had antimicrobial activity. A colony overlay activity assay showed that one of the mutants (designated B1) produced a >7.8-mm growth inhibition circle on L. lactis, whereas the parent pediocin PA-1 did not produce any circle. Furthermore, the active shuffled mutants showed increased activity against various species of Lactobacillus, Pediococcus, and Carnobacterium. Sequence analysis revealed that the active mutants had novel N-terminal sequences; in active mutant B1, for example, the parental pediocin PA-1 sequence (KYYGNGVTCGKHSC) was changed to TKYYGNGVSCTKSGC. These new and improved DNA-shuffled bacteriocins could prove useful as food additives for inhibiting sour spoilage of dairy products.  相似文献   

3.
4.
Endoribonuclease III (RNase III) plays an important role in the processing of rRNA and mRNAs. It is timely to summarize the most relevant insights obtained during the last years stemming from RNase III. With this aim, the present mini-review provides a wealth of new information focusing on the distribution and architecture of RNase III, substrate recognition, cleavage mechanisms and regulation of gene expression.  相似文献   

5.
Class IIa bacteriocins: biosynthesis, structure and activity   总被引:29,自引:0,他引:29  
In the last decade, a variety of ribosomally synthesized antimicrobial peptides or bacteriocins produced by lactic acid bacteria have been identified and characterized. As a result of these studies, insight has been gained into fundamental aspects of biology and biochemistry such as producer self protection, membrane-protein interactions, and protein modification and secretion. Moreover, it has become evident that these peptides may be developed into useful antimicrobial additives. Class IIa bacteriocins can be considered as the major subgroup of bacteriocins from lactic acid bacteria, not only because of their large number, but also because of their activities and potential applications. They have first attracted particular attention as listericidal compounds and are now believed to be the next in line if more bacteriocins are to be approved in the future. The present review attempts to provide an insight into general knowledge available for class IIa bacteriocins and discusses common features and recent findings concerning these substances.  相似文献   

6.
Pediocin-like antimicrobial peptides (AMPs) form a group of lactic acid bacteria produced, cationic membrane-permeabilizing peptides with 37 to 48 residues. Upon exposure to membrane-mimicking entities, their hydrophilic, cationic, and highly conserved N-terminal region forms a three-stranded antiparallel beta-sheet supported by a conserved disulfide bridge. This N-terminal beta-sheet region is followed by a central amphiphilic alpha-helix and this in most (if not all) of these peptides is followed by a rather extended C-terminal tail that folds back onto the central alpha-helix, thereby creating a hairpin-like structure in the C-terminal half. There is a flexible hinge between the beta-sheet N-terminal region and the hairpin C-terminal region and one thus obtains two domains that may move relative to each other. The cationic N-terminal beta-sheet domain mediates binding of the pediocin-like AMPs to the target-cell surface through electrostatic interactions, while the more hydrophobic and amphiphilic C-terminal hairpin domain penetrates into the hydrophobic part of the target-cell membrane, thereby mediating leakage through the membrane. The hinge provides the structural flexibility that enables the C-terminal hairpin domain to dip into the hydrophobic part of the membrane. Despite extensive sequence similarities, these AMPs differ markedly in their target-cell specificity, and results obtained with hybrid AMPs indicate that the membrane-penetrating hairpin-like C-terminal domain is the major specificity determinant.Bacteria that produce pediocin-like AMPs also produce a 11-kDa cognate immunity protein that protects the producer. The immunity proteins are well-structured, 4-helix bundle cytosolic proteins. They show a high degree of specificity in that they largely recognize and confer immunity only to their cognate AMP and in some cases to a few AMPs that are closely related to their cognate AMP. The C-terminal half of the immunity proteins contains a domain that is involved in specific recognition of the C-terminal membrane-penetrating specificity-determining hairpin domain of the cognate AMP.  相似文献   

7.
BackgroundThe scope of the present work was to characterize the activity of class IIa bacteriocins in Listeria (L.) monocytogenes cells that constitutively express an activated form of PrfA, the virulence master regulator, since bacteriocin sensitivity was only characterized in saprophytic cells so far. The mannose phosphotransferase system (Man-PTS) has been shown to be the class IIa bacteriocin receptor in Listeria; hence, special attention was paid to its expression in virulent bacteria.MethodsL. monocytogenes FBprfA* cells were obtained by transconjugation. Bacterial growth was studied in TSB and glucose containing-minimal medium. Sensitivity to antimicrobial peptides was assessed by killing curves. Membranes of L. monocytogenes FBprfA* cells were characterized using proteomic and lipidomic approaches.ResultsThe mannose phosphotransferase system (Man-PTS) was downregulated upon expression of PrfA*, and these cells turned out to be more sensitive to enterocin CRL35 and pediocin PA-1, while not to nisin. Proteomic and lipidomic analysis showed differences between wild type (WT) and PrfA* strains. For instance, phosphatidic acid was only detected in PrfA* cells, whereas, there was a significant decline of plasmalogen-phosphatidylglycerol in the same strain.ConclusionsOur results support a model in which Man-PTS acts just as a docking molecule that brings class IIa bacteriocins to the plasma membrane. Furthermore, our results suggest that lipids play a crucial role in the mechanism of action of bacteriocins.General significanceThis is the first demonstration of the link between L. monocytogenes virulence and the bacterial sensitivity toward pediocin-like peptides.  相似文献   

8.
Piscicolin 126 is a class IIa bacteriocin isolated from Carnobacterium piscicola JG126 that exhibits strong activity against Listeria monocytogenes. The gene encoding mature piscicolin 126 (m-pisA) was cloned into an Escherichia coli expression system and expressed as a thioredoxin-piscicolin 126 fusion protein that was purified by affinity chromatography. Purified recombinant piscicolin 126 was obtained after CNBr cleavage of the fusion protein followed by reversed-phase chromatography. Recombinant piscicolin 126 contained a single disulfide bond and had a mass identical to that of native piscicolin 126. This novel bacteriocin expression system generated approximately 26 mg of purified bacteriocin from 1 liter of E. coli culture. The purified recombinant piscicolin 126 acted by disruption of the bacterial cell membrane.  相似文献   

9.
It was previously shown that enhanced nisin resistance in some mutants was associated with increased expression of three genes, pbp2229, hpk1021, and lmo2487, encoding a penicillin-binding protein, a histidine kinase, and a protein of unknown function, respectively. In the present work, we determined the direct role of the three genes in nisin resistance. Interruption of pbp2229 and hpk1021 eliminated the nisin resistance phenotype. Interruption of hpk1021 additionally abolished the increase in pbp2229 expression. The results indicate that this nisin resistance mechanism is caused directly by the increase in pbp2229 expression, which in turn is brought about by the increase in hpk1021 expression. We also found a degree of cross-protection between nisin and class IIa bacteriocins and investigated possible mechanisms. The expression of virulence genes in one nisin-resistant mutant and two class IIa bacteriocin-resistant mutants of the same wild-type strain was analyzed, and each mutant consistently showed either an increase or a decrease in the expression of virulence genes (prfA-regulated as well as prfA-independent genes). Although the changes mostly were moderate, the consistency indicates that a mutant-specific change in virulence may occur concomitantly with bacteriocin resistance development.  相似文献   

10.
Screening of a bovine yeast artificial chromosome (YAC) library revealed two clones which contain most of the class II genes of the major histocompatibility complex (MHC) known to date. The YACs were mapped by fluorescence in situ hybridization (FISH) and characterized for the class II genes they contain. We found that the classic class II genes BoLA- DQA, -DQB, -DRA, and -DRB3 are located at BTA 23q21 and the non-classic class II genes DYA, DIB, LMP2, LMP7, TAP2, BoLA-DOB, -DMA, -DMB, and -DNA are located at BTA 23q12-->q13. These two different mapping locations confirm and extend previous findings of a gross physical distance between classic and non-classic MHC class II genes in cattle.  相似文献   

11.
Growth of dendritic spines: a continuing story   总被引:10,自引:0,他引:10  
Dendritic spines, which are present at the vast majority of excitatory synapses in the central nervous system, have a specialized cytoskeleton of dynamic actin filaments that makes them capable of rapid morphological plasticity. During development, structural remodeling of nascent spines is an important factor in experience-dependent shaping of neuronal circuits, whereas in the adult brain spines maintain a balance between morphological stability and plasticity.  相似文献   

12.
It was shown recently (Calvez et al. 2007) that glpQ and pde genes are involved in intermediate resistance of Enterococcus faecalis JH2-2 to DvnV41, a class IIa bacteriocin produced by Carnobacterium divergens V41. The listerial orthologs of lpQ and pde genes might be lmo0052 and lmo1292 genes, respectively. Here, the role of lmo0052 and lmo1292 genes in resistance of Listeria monocytogenes EGDe to DvnV41 and MesY105 was investigated. L. monocytogenes EGDe was inactivated in lmo0052 and/or lmo1292 by homologous recombination. Listerial mutant strain EGDSC02 (inactivated in the putative glpQ gene), was slightly resistant to DvnV41. The listerial mutant strain EGDSC01 (inactivated in the putative pde gene) remained, as the wild-type strain, sensitive to DvnV41, but was affected in growth parameters.  相似文献   

13.
Antimicrobial peptides exhibit high levels of antimicrobial activity against a broad range of spoilage and pathogenic microorganisms. Compared with bacteriocins produced by lactic acid bacteria, antimicrobial peptides from the genus Bacillus have been relatively less recognized despite their broad antimicrobial spectra. These peptides can be classified into two different groups based on whether they are ribosomally (bacteriocins) or nonribosomally (polymyxins and iturins) synthesized. Because of their broad spectra and high activity, antimicrobial peptides from Bacillus spp. may have great potential for applications in the food, agricultural, and pharmaceutical industries to prevent or control spoilage and pathogenic microorganisms. In this review, we introduce ribosomally synthesized antimicrobial peptides, the lantibiotic bacteriocins produced by members of Bacillus. In addition, the biosynthesis, genetic organization, mode of action, and regulation of subtilin, a well-investigated lantibiotic from Bacillus subtilis, are discussed.  相似文献   

14.
Epigenetic control plays an important role in gene regulation through chemical modifications of DNA and post-translational modifications of histones. An essential post-translational modification is the histone acetylation/deacetylation-process which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The mammalian zinc dependent HDAC family is subdivided into three classes: class I (HDACs 1-3, 8), class II (IIa: HDACs 4, 5, 7, 9; IIb: HDACs 6, 10) and class IV (HDAC 11). In this review, recent studies on the biological role and regulation of class IIa HDACs as well as their contribution in neurodegenerative diseases, immune disorders and cancer will be presented. Furthermore, the development, synthesis, and future perspectives of selective class IIa inhibitors will be highlighted.  相似文献   

15.
The pediocin-like bacteriocins contain two domains: a cationic N-terminal beta-sheet domain that mediates binding of the bacteriocin to the target cell surface and a more hydrophobic C-terminal hairpin-like domain that penetrates into the hydrophobic part of the target cell membrane. The two domains are joined by a hinge, which enables movement of the domains relative to each other. In this study, 12 different hybrid bacteriocins were constructed by exchanging domains between 5 different bacteriocins. The hybrid bacteriocins were by and large highly potent (i.e. similar potencies as the parental bacteriocins) when constructed such that the recombination point was in the hinge region, indicating that the two domains function independently. The use of optimal recombination points was, however, crucial. Shifting the recombination point just one residue from the hinge could reduce the activity of the hybrid by 3-4 orders of magnitude. Most interestingly, the active hybrids displayed target cell specificities similar to those of the parental bacteriocin from which their membrane-penetrating C-terminal hairpin domain was derived. The results also indicate that the negatively charged aspartate reside in the hinge of most pediocin-like bacteriocins interacts with the C-terminal hairpin domain, perhaps by interacting with the positively charged residue that is present at one of the last three positions in the C-terminal end of most pediocin-like bacteriocins. Bacteria that produce pediocin-like bacteriocins also produce a cognate immunity protein that protects the producer from being killed by its own bacteriocin. Four different active hybrid immunity proteins constructed by exchanging regions between three different immunity proteins were tested for their ability to confer immunity to the hybrid bacteriocins. The results showed that the C-terminal half of the immunity proteins contains a region that directly or indirectly specifically recognizes the membrane-penetrating C-terminal hairpin domain of pediocin-like bacteriocins. The implications these results have on how pediocin-like bacteriocins and their immunity proteins interact with cellular specificity determinants (for instance a putative bacteriocin receptor) are discussed.  相似文献   

16.
NB-C1为一种潜在的IIa类细菌素基因,为实现其在大肠杆菌中的高效可溶表达,首先构建了NB-C1蛋白与绿色荧光蛋白 (GFP) 的融合表达载体pIVEX 2.4d-GFP-NB-C1,然后将构建的表达载体转化大肠杆菌BL21(DE3) pLysS,经诱导表达后,重组蛋白GFP-NB-C1以可溶的形式存在于细胞内。经Ni-NTA亲和层析柱分离纯化后,重组融合蛋白的纯度大于95%,产量达36.1 mg/L。抑菌试验表明,纯化后的重组蛋白对单核细胞增生李斯特氏菌具有明显的抑制作用。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号