首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ethanol is known to induce apoptosis in hepatocytes. However, intracellular signaling events of ethanol-induced death are still only partially understood. We studied such processes in ethanol-induced apoptosis in HepG2 cells as a model system for human liver cells. We determined the incidence of apoptosis by DNA fragmentation and tested the effects of various known inhibitors. Ethanol induces apoptosis in HepG2 cells in a dose- and time-dependent manner as well as in rat primary hepatocytes. This effect was not mediated through the death receptor CD95 and the tumor necrosis factor receptors. It was efficiently inhibited by the caspase inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp-fluoromethylketone (zVAD-fmk), the Ca2+ chelator EGTA, and the serine protease inhibitor N-p-tosyl- -lysine chloromethyl ketone (TLCK). Upon ethanol treatment, the intracellular calcium ion concentration was increased and cytochrome c was released from the mitochondria, and caspases were activated. EGTA and TLCK could inhibit cytochrome c release from the mitochondria. Furthermore, overexpression of Bcl-xL saved cells from ethanol-induced apoptosis. These data suggest that ethanol-induced apoptosis in liver cells is initiated by the intracellular Ca2+ elevation in the cytoplasm and activation of TLCK-sensitive serine proteases. Our data provide new insight into ethanol-induced apoptosis in liver cells and may lead to therapeutic strategies to prevent liver damage.  相似文献   

2.
Our previous work has demonstrated that while the Ca(2+) and Pi ions acting in concert function as a potent osteoblast apoptogen, the underlying mechanisms by which it activates cell death is not known. We hypothesize that the ion pair causes release of Ca(2+) from intracellular stores ([Ca(2+)]i); the increase in intracellular calcium prompts the mitochondria to uptake more calcium. This accumulation of calcium eventually results in the loss of mitochondrial membrane potential (MMP) and, subsequently, apoptosis. To test this hypothesis, we evaluated apoptosome formation in MC3T3-E1 osteoblast-like cells treated with the ion pair. Western blot analysis indicated migration of cytochrome-c and Smac/DIABLO from mitochondria to the cytoplasm. Inhibition of either the electron transfer chain (with antimycin a and rotenone), or the activation of a MMP transition (with bongkrekic acid) inhibited apoptosis in a dose-dependent manner. Pre-treating osteoblasts with ruthenium red, a Ca(2+) uniporter inhibitor of both mitochondria and the endoplasmic reticulum (ER), also completely abolished Ca(2+.)Pi-induced apoptosis. Moreover, we showed that an increase in [Ca(2+)]i preceded the increase in MMP over the first 45 min of treatment; a mitochondrial membrane permeability transition was evident at 75 min. To determine the role of ER, Ca(2+) stores in the generation of the apoptotic signal by the ion pair, cells were treated with several inhibitors. Apoptosis was inhibited when cells were treated with dantrolene, an inhibitor of ER ryanodine receptors, and 2-aminodiphenylborate, an IP3 Ca(2+) channel inhibitor, but not cyclopiazonic acid, an ER Ca(2)-ATPase inhibitor. Together, these data demonstrate that Ca(2+) Pi-induced osteoblast apoptosis is characterized by the generation of an apoptosome and that Ca(2+) release from ER stores may promote ion pair-dependent cell death.  相似文献   

3.
Cytochrome c release is a central step in the apoptosis induced by many death stimuli. Bcl-2 plays a critical role in controlling this step. In this study, we investigated the upstream mechanism of cytochrome c release induced by ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA14-1), a recently discovered small molecule inhibitor of Bcl-2. HA14-1 was found to induce cytochrome c release from the mitochondria of intact cells but not from isolated mitochondria. Cytochrome c release from isolated mitochondria requires the presence of both HA14-1 and exogenous Ca(2+). This suggests that both mitochondrial and extramitochondrial signals are important. In intact cells, treatment with HA14-1 caused Ca(2+) spike, change in mitochondrial membrane potential (Delta psi(m)) transition, Bax translocation, and reactive oxygen species (ROS) generation prior to cytochrome c release. Pretreatment with either EGTA acetoxymethyl ester or vitamin E resulted in a significant decrease in cytochrome c release and cell death induced by HA14-1. Furthermore pretreatment with RU-360, an inhibitor of the mitochondrial Ca(2+) uniporter, or with EGTA acetoxymethyl ester, but not with vitamin E, prevented the HA14-1-induced Delta psi(m) transition and Bax translocation. This suggests that ROS generation is an event that occurs after the Delta psi(m) transition and Bax translocation. Together these data demonstrate that the Ca(2+) spike, mitochondrial Bcl-2 presensitization, and subsequent Delta psi(m) transition, Bax translocation, and ROS generation are important upstream signals for cytochrome c release upon HA14-1 stimulation. The involvement of endoplasmic reticulum and mitochondrial signals suggests both organelles are crucial for HA14-1-induced apoptosis.  相似文献   

4.
Curcumin, a natural, biologically active compound extracted from rhizomes of Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor, and anti-oxidative properties. The mechanism by which curcumin initiates apoptosis remains poorly understood. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human leukemia U937 cells. Curcumin induces apoptosis in U937 cells via a mechanism that appears to involve down-regulation of the anti-apoptotic Bcl-xL, and IAP proteins, release of cytochrome c, and activation of caspase 3. Ruthenium red, an inhibitor of mitochondrial uniporter, specifically inhibits curcumin-induced apoptosis in U937 cells. Cotreatment with ruthenium red markedly prevented the activation of caspase 3, cytochrome c release, and cell death, suggesting a role for intracellular Ca(2+) in this process. Curcumin induced a marked depletion of [Ca(2+)](i) in Caki cells bathed with both Ca(2+)-containing and -free solutions. Thapsigargin (TG), cyclopiazonic acid (CPA), and dantolene (DAN) had no effect. Ruthenium red, an inhibitor of mitochondrial uniporter, only attenuated the curcumin-induced [Ca(2+)](i) depletion in a dose-dependent manner. These data indicate that curcumin acts as a stimulator of intracellular Ca(2+) uptake into mitochondria via uniporter pathway and may involve in the execution of apoptosis.  相似文献   

5.
Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha   总被引:8,自引:0,他引:8  
We studied the intracellular events associated with pancreatic beta cell apoptosis by IFN-gamma/TNF-alpha synergism. IFN-gamma/TNF-alpha treatment of MIN6N8 insulinoma cells increased the amplitude of high voltage-activated Ca(2+) currents, while treatment with IFN-gamma or TNF-alpha alone did not. Cytosolic Ca(2+) concentration ([Ca(2+)](c)) was also increased by IFN-gamma/TNF-alpha treatment. Blockade of L-type Ca(2+) channel by nifedipine abrogated death of insulinoma cells by IFN-gamma/TNF-alpha. Diazoxide that attenuates voltage-activated Ca(2+) currents inhibited MIN6N8 cell death by IFN-gamma/TNF-alpha, while glibenclamide that accentuates voltage-activated Ca(2+) currents augmented insulinoma cell death. A protein kinase C inhibitor attenuated MIN6N8 cell death and the increase in [Ca(2+)](c) by IFN-gamma/TNF-alpha. Following the increase in [Ca(2+)](c), calpain was activated, and calpain inhibitors decreased insulinoma cell death by IFN-gamma/TNF-alpha. As a downstream of calpain, calcineurin was activated and the inhibition of calcineurin activation by FK506 diminished insulinoma cell death by IFN-gamma/TNF-alpha. BAD phosphorylation was decreased by IFN-gamma/TNF-alpha because of the increased calcineurin activity, which was reversed by FK506. IFN-gamma/TNF-alpha induced cytochrome c translocation from mitochondria to cytoplasm and activation of caspase-9. Effector caspases such as caspase-3 or -7 were also activated by IFN-gamma/TNF-alpha treatment. These results indicate that IFN-gamma/TNF-alpha synergism induces pancreatic beta cell apoptosis by Ca(2+) channel activation followed by downstream intracellular events such as mitochondrial events and caspase activation and also suggest the therapeutic potential of Ca(2+) modulation in type 1 diabetes.  相似文献   

6.
Ethanol treatment causes an increase in expression of TGF-beta1 and CYP2E1 in the centrilobular area. Alcoholic liver disease is usually initiated in the centrilobular region of the liver. We hypothesized that the combination of TGF-beta1 and CYP2E1 produces increased oxidative stress and liver cell toxicity. To test this possibility, we studied the effects of TGF-beta1 on the viability of HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells, which do not express CYP2E1. E47 cells underwent greater growth inhibition and enhanced apoptosis after TGF-beta1 treatment, as compared to the C34 cells. There was an enhanced production of reactive oxygen species (ROS) and a decline in reduced glutathione (GSH) levels in the TGF-beta1-treated E47 cells and the enhanced cell death could be prevented by antioxidants. The CYP2E1 inhibitor diallyl sulfide prevented the potentiated cell death in E47 cells validating the role of CYP2E1. Mitochondrial membrane potential declined in the TGF-beta1-treated E47 cells, prior to developing toxicity, and cell death could be prevented by trifluoperazine, an inhibitor of the mitochondrial membrane permeability transition. TGF-beta1 also produced a loss of cell viability in hepatocytes from pyrazole-treated rats with elevated levels of CYP2E1, compared to control hepatocytes. In conclusion, increased toxic interactions by TGF-beta1 plus CYP2E1 can occur by a mechanism involving increased production of intracellular ROS and depletion of GSH, resulting in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of TGF-beta1-induced cell death by CYP2E1 may contribute to mechanisms of alcohol-induced liver disease.  相似文献   

7.
Calcium ions (Ca(2+)) are involved in a number of physiological cellular functions including apoptosis. An elevation in intracellular levels of Ca(2+) in A23187-treated HL-60 cells was associated with the generation of both intracellular and extracellular reactive oxygen species (ROS) and induction of apoptotic cell death. A23187-induced apoptosis was prevented by cyclosporin A, a potent inhibitor of mitochondrial permeability transition (MPT). The generation of extracellular ROS was suppressed by the NADPH oxidase inhibitor diphenylene iodonium, and by superoxide dismutase, but these agents had no effect on A23187-induced apoptosis. In contrast, the blocking of intracellular ROS by a cell-permeant antioxidant diminished completely the induction of MPT and apoptosis. In isolated mitochondria, the addition of Ca(2+) induced a typical MPT concomitant with the generation of ROS, which leads to augmentation of intracellular ROS levels. These results indicate that intracellular not extracellular ROS generated by A23187 is associated with the opening of MPT pores that leads to apoptotic cell death.  相似文献   

8.
The treatment of H4-IIE cells (an immortalised liver cell line derived from the Reuber rat hepatoma) with thapsigargin, 2, 5-di-(tert-butyl)-1,4-benzohydroquinone, cyclopiazonic acid, or pretreatment with EGTA, stimulated Ca(2+) inflow (assayed using intracellular fluo-3 and a Ca(2+) add-back protocol). No stimulation of Mn(2+) inflow by thapsigargin was detected. Thapsigargin-stimulated Ca(2+) inflow was inhibited by Gd(3+) (maximal inhibition at 2 microM Gd(3+)), the imidazole derivative SK&F 96365, and by relatively high concentrations of the voltage-operated Ca(2+) channel antagonists, verapamil, nifedipine, nicardipine and the novel dihydropyridine analogues AN406 and AN1043. The calmodulin antagonists W7, W13 and calmidazolium also inhibited thapsigargin-induced Ca(2+) inflow and release of Ca(2+) from intracellular stores. No inhibition of either Ca(2+) inflow or Ca(2+) release was observed with calmodulin antagonist KN62. Substantial inhibition of Ca(2+) inflow by calmidazolium was only observed when the inhibitor was added before thapsigargin. Pretreatment of H4-IIE cells with pertussis toxin, or treatment with brefeldin A, did not inhibit thapsigargin-stimulated Ca(2+) inflow. Compared with freshly isolated rat hepatocytes, H4-IIE cells exhibited a more diffuse actin cytoskeleton, and a more granular arrangement of the endoplasmic reticulum (ER). In contrast to freshly isolated hepatocytes, the arrangement of the ER in H4-IIE cells was not affected by pertussis toxin treatment. Western blot analysis of lysates of freshly isolated rat hepatocytes revealed two forms of G(i2(alpha)) with apparent molecular weights of 41 and 43 kDa. Analysis of H4-IIE cell lysates showed only the 41 kDa form of G(i2(alpha)) and substantially less total G(i2(alpha)) than that present in rat hepatocytes. It is concluded that H4-IIE cells possess store-operated Ca(2+) channels which do not require calmodulin for activation and exhibit properties similar to those in freshly isolated rat hepatocytes, including susceptibility to inhibition by relatively high concentrations of voltage-operated Ca(2+) channel antagonists. In contrast to rat hepatocytes, SOCs in H4-IIE cells do not require G(i2(alpha)) for activation. Possible explanations for differences in the requirement for G(i2(alpha)) in the activation of Ca(2+) inflow are briefly discussed.  相似文献   

9.
Glibenclamide, an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 human hepatoblastoma cells. Glibenclamide increased intracellular Ca(2+) concentration, which was significantly inhibited by Ca(2+) release blockers dantrolene and TMB-8. BAPTA/AM, an intracellular Ca(2+) chelator, and the Ca(2+) release blockers significantly inhibited glibenclamide-induced apoptosis. Glibanclamide also increased intracellular Cl(-) concentration, which was significantly blocked by CFTR Cl(-) channel activators levamisole and bromotetramisole. These activators also significantly inhibited both intracellular Ca(2+) release and apoptosis induced by glibenclamide. The expression of CFTR protein in the cells was confirmed by Western blot analysis. These results suggest that glibenclamide induced apoptosis through inhibition of CFTR Cl(-) channels and intracellular Ca(2+) release and that this protein may be a good target for treatment of human hepatomas.  相似文献   

10.
Antimycin A (AMA) inhibits succinate oxidase and NADH oxidase, and also inhibits mitochondrial electron transport between cytochromes b and c. We investigated the involvement of ROS and GSH in AMA-induced HeLa cell death. AMA increased the intracellular H(2)O(2) and O(2)(*-) levels and reduced the intracellular GSH content. ROS scavengers (Tempol, Tiron, Trimetazidine and NAC) did not down-regulate the production of ROS and inhibit apoptosis in AMA-treated cells. Treatment with NAC and N-propylgallate showing the enhancement of GSH depletion in AMA-treated cells significantly intensified the levels of apoptosis. Calpain inhibitors I and II (calpain inhibitor III) and Ca(2+)-chelating agent (EGTA/AM) significantly reduced H(2)O(2) levels in AMA-treated HeLa cells. However, treatment with calpain inhibitor III intensified the levels of O(2)(*-) in AMA-treated cells. In addition, calpain inhibitor III strongly depleted GSH content with an enhancement of apoptosis in AMA-treated cells. Conclusively, the changes of ROS by AMA were not tightly correlated with apoptosis in HeLa cells. However, intracellular GSH levels are tightly related to AMA-induced cell death.  相似文献   

11.
We have previously shown that when annexin V is present during the execution of a cell death program, apoptosis is delayed. This is reflected by the inhibition of DNA cleavage and of the release of apoptotic membrane particles, and by reduction of the proteolytic processing of caspase-3. Here, we have studied the mechanism(s) through which annexin V counteracts apoptosis in the human CEM T cell line. The degree of apoptosis inhibition was associated with an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). Reduction of the extracellular Ca(2+) concentration by EGTA abolished the anti-apoptotic effect, suggesting that annexin V favors Ca(2+) influx and that Ca(2+) acts as an inhibitor rather than an activator of apoptosis in CEM T cells. The effects on apoptosis and [Ca(2+)](i) of several modified annexins with different electrophysiological properties indicate that the N-terminal domain of annexin V is necessary for the Ca(2+)-dependent anti-apoptotic action of annexin V. These results suggest that annexin V regulates membrane Ca(2+) permeability and is protective against apoptosis by increasing [Ca(2+)](i) in CEM T cells.  相似文献   

12.
Alterations in intracellular Ca(2+) homeostasis and cytochrome c release from mitochondria have been implicated in the regulation of apoptosis, but the relationship between these events remains unclear. Here we report that enforced expression of either Bax or Bak via adenoviral gene delivery results in the accumulation of the proteins in the endoplasmic reticulum (ER) and mitochondria, resulting in early caspase-independent BCL-2-sensitive release of the ER Ca(2+) pool and subsequent Ca(2+) accumulation in mitochondria. The inhibition of ER-to-mitochondrial Ca(2+) transport with a specific inhibitor of mitochondrial Ca(2+) uptake attenuates cytochrome c release and downstream biochemical events associated with apoptosis. Bax and Bak also directly sensitize mitochondria to cytochrome c release induced by immediate emptying of ER Ca(2+) pool. Our results demonstrate that the effects of the "multidomain" proapoptotic BCL-2 family members Bak and Bax involve direct effects on the endoplasmic reticular Ca(2+) pool with subsequent sensitization of mitochondria to calcium-mediated fluxes and cytochrome c release. These effects modulate the kinetics of cytochrome c release and apoptosis.  相似文献   

13.
The role of Na(+), K(+), Cl(-)-cotransport (NKCC) in apoptosis of HepG2 human hepatoblastoma cells was investigated. Pinacidil (Pin), an activator of ATP-sensitive K(+) (K(ATP)) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 cells. Pin increased intracellular K(+) concentration ([K(+)](i)). Bumetanide and furosemide, NKCC inhibitors, significantly inhibited the Pin-induced increased [K(+)](i) and apoptosis, whereas K(ATP) inhibitors (glibenclamide and tolbutamide) had no effects. The Pin-induced [K(+)](i) increase was significantly prevented by reducing extracellular Cl(-) concentration, and Pin also increased intracellular Na(+) concentration ([Na(+)](i)), further indicating that these effects of Pin may be due to NKCC activation. In addition, Pin induced a rapid and sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), which was completely prevented by the NKCC inhibitors. Treatment with EGTA or BAPTA/AM markedly inhibited the Pin-induced apoptosis. Inhibitors of Na(+), Ca(2+)-exchanger, bepridil, and benzamil significantly prevented both [Ca(2+)](i) increase and apoptosis induced by Pin. Taken together, these results suggest that Pin increases [Na(+)](i) through NKCC activation, which leads to stimulation of reverse-mode of Na(+), Ca(2+) exchanger, resulting in [Ca(2+)](i) increase, and in turn, apoptosis. These results further suggest that NKCC may be a good target for induction of apoptosis in human hepatoma cells.  相似文献   

14.
Sustained alteration in [Ca(2+)]i triggers neuronal death. We examined morphological and signaling events of Ca(2+)-deficiency-induced neuronal death. Cortical cell cultures exposed to 20 microM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM), an intracellular calcium chelator, underwent neuronal apoptosis within 12 h that was evident by shriveled cell bodies, aggregated and condensed nuclear chromatin, and disrupted nuclear membrane. Thereafter, surviving neurons revealed typical necrosis, accompanied by swelling of cell body and mitochondria, over 24 h. Both apoptosis and necrosis were prevented by inclusion of 1 microg/mL cycloheximide, a protein synthesis inhibitor. Treatment with BAPTA-AM induced translocation of Bax into mitochondria within 4 h and release of cytochrome c from mitochondria over 4-12 h. An active fragment of caspase-3, a downstream mediator of cytochrome c, was observed within 8 h and cleaved PHF-1-positive tau. Administration of zVAD-fmk, a broad inhibitor of caspases, or DEVD-amc, a selective inhibitor of caspase-3, selectively prevented the apoptosis component of BAPTA-AM neurotoxicity. In contrast, BAPTA-AM-induced necrosis was propagated through sequential production of superoxide, mitochondrial and cytoplasmic reactive oxygen species. Combined treatment with caspase inhibitors and antioxidants blocked BAPTA-AM neurotoxicity. The present study suggests that neurons deficient in [Ca(2+)]i undergo caspase-3-mediated apoptosis and reactive oxygen species (ROS)-mediated necrosis.  相似文献   

15.
Previous studies have shown that microcystin-LR (MLR), a specific hepatotoxin, induces onset of mitochondrial permeability transition (MPT) and apoptosis in cultured rat hepatocytes. Here we attempted to investigate the downstream events after the onset of MPT in MLR-treated hepatocytes. Various mitochondrial electron transport chain (ETC) inhibitors effectively prevented the onset of MPT, suggesting that the mitochondrial ETC plays an important role in MLR-induced MPT. MLR also induced mitochondrial cytochrome c release, which can be prevented by a specific MPT inhibitor (cyclosporin A, CsA), and by various ETC inhibitors. Interestingly, the release of cytochrome c did not activate caspase-9 and -3, the main caspases involved in apoptosis. Instead, MLR activated calpain in rat hepatocytes, probably through the increase of intracellular Ca(2+) released from mitochondria. Both ALLN and ALLM, two calpain inhibitors, significantly blocked MLR-induced calpain activation and subsequent cell death. CsA also prevented MLR-induced calpain activation and cell death, suggesting that the activation of calpain may be a post-mitochondrial event. These data demonstrate for the first time that calpain rather than caspases plays an important role in MLR-induced apoptosis.  相似文献   

16.
Qu X  Qi Y  Lan P  Li Q 《FEBS letters》2002,529(2-3):325-331
HAP, a novel human apoptosis-inducing protein, was identified to localize exclusively to the endoplasmic reticulum (ER) in our previous work. In the present work, we reported that ectopic overexpression of HAP proteins caused the rapid and sustained elevation of the intracellular cytosolic Ca(2+), which originated from the reversible ER Ca(2+) stores release and the extracellular Ca(2+) influx. The HeLa cells apoptosis induced by HAP proteins was not prevented by establishing the clamped cytosolic Ca(2+) condition, or by buffering of the extracellular Ca(2+) with EGTA, suggesting that the depletion of ER Ca(2+) stores rather than the elevation of cytosolic Ca(2+) or the extracellular Ca(2+) entry contributed to HAP-induced HeLa cells apoptosis. Caspase-3 was also activated in the process of HAP-triggered apoptotic cell death.  相似文献   

17.
Ca2+ signaling, mitochondria and cell death   总被引:1,自引:0,他引:1  
In the complex interplay that allows different signals to be decoded into activation of cell death, calcium (Ca2+) plays a significant role. In all eukaryotic cells, the cytosolic concentration of Ca2+ ions ([Ca2+]c) is tightly controlled by interactions among transporters, pumps, channels and binding proteins. Finely tuned changes in [Ca2+]c modulate a variety of intracellular functions ranging from muscular contraction to secretion, and disruption of Ca2+ handling leads to cell death. In this context, Ca2+ signals have been shown to affect important checkpoints of the cell death process, such as mitochondria, thus tuning the sensitivity of cells to various challenges. In this contribution, we will review (i) the evidence supporting the involvement of Ca2+ in the three major process of cell death: apoptosis, necrosis and autophagy (ii) the complex signaling interplay that allows cell death signals to be decoded into mitochondria as messages controlling cell fate.  相似文献   

18.
19.
Calcium is a key signaling molecule in beta-lapachone-mediated cell death   总被引:5,自引:0,他引:5  
beta-Lapachone (beta-Lap) triggers apoptosis in a number of human breast and prostate cancer cell lines through a unique apoptotic pathway that is dependent upon NQO1, a two-electron reductase. Downstream signaling pathway(s) that initiate apoptosis following treatment with beta-Lap have not been elucidated. Since calpain activation was suspected in beta-Lap-mediated apoptosis, we examined alterations in Ca(2+) homeostasis using NQO1-expressing MCF-7 cells. beta-Lap-exposed MCF-7 cells exhibited an early increase in intracellular cytosolic Ca(2+), from endoplasmic reticulum Ca(2+) stores, comparable to thapsigargin exposures. 1,2-Bis-(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester, an intracellular Ca(2+) chelator, blocked early increases in Ca(2+) levels and inhibited beta-Lap-mediated mitochondrial membrane depolarization, intracellular ATP depletion, specific and unique substrate proteolysis, and apoptosis. The extracellular Ca(2+) chelator, EGTA, inhibited later apoptotic end points (observed >8 h, e.g. substrate proteolysis and DNA fragmentation), suggesting that later execution events were triggered by Ca(2+) influxes from the extracellular milieu. Collectively, these data suggest a critical, but not sole, role for Ca(2+) in the NQO1-dependent cell death pathway initiated by beta-Lap. Use of beta-Lap to trigger an apparently novel, calpain-like-mediated apoptotic cell death could be useful for breast and prostate cancer therapy.  相似文献   

20.
We address the specific role of cytoplasmic Ca(2+) overload as a cell death trigger by expressing a receptor-operated specific Ca(2+) channel, vanilloid receptor subtype 1 (VR1), in Jurkat cells. Ca(2+) uptake through the VR1 channel, but not capacitative Ca(2+) influx stimulated by the muscarinic type 1 receptor, induced sustained intracellular [Ca(2+)] rises, exposure of phosphatidylserine, and cell death. Ca(2+) influx was necessary and sufficient to induce mitochondrial damage, as assessed by opening of the permeability transition pore and collapse of the mitochondrial membrane potential. Ca(2+)-induced cell death was inhibited by ruthenium red, protonophore carbonyl cyanide m-chlorophenylhydrazone, or cyclosporin A treatment, as well as by Bcl-2 expression, indicating that this process requires mitochondrial calcium uptake and permeability transition pore opening. Cell death occurred without caspase activation, oligonucleosomal/50-kilobase pair DNA cleavage, or release of cytochrome c or apoptosis inducer factor from mitochondria, but it required oxidative/nitrative stress. Thus, Ca(2+) influx triggers a distinct program of mitochondrial dysfunction leading to paraptotic cell death, which does not fulfill the criteria for either apoptosis or necrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号