首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Currently, the reliable detection and quantification of a multitude of different analytes is crucial in many applications and settings. Biosensors have revolutionised diagnostics for use in point-of-care testing (POC), the detection of food and environmental contaminants, biological warfare agents, illicit drugs and human/animal disease markers. Antibodies continue to play a pivotal role in many sensor devices due to their exquisite specificity for their cognate antigens. In this review current biosensor platforms employing antibodies for molecular recognition are briefly described. The use of molecular biological techniques for the generation and improvement of antibodies is critically examined. Such recombinant antibodies possess improved attributes for use in biosensor development in terms of design, stability, affinity and specificity.  相似文献   

2.
New developments in biosensor design are appearing at a high rate as these devices play increasingly important roles in daily life. This review aims to highlight recent developments in materials and techniques for electrochemical biosensor design and construction. Rapid growth in biomaterials, especially the availability and application of a vast range of polymers and copolymers associated with new sensing techniques have led to remarkable innovation in the design and construction of biosensors, significant improvements in sensor function and the emergence of new types of biosensor. Nevertheless, in vivo applications remain limited by functional deterioration due to surface fouling by biological components. However, new copolymers based upon biomembrane mimicry have been extensively investigated during the last two decades, raising hopes that the problems related to interactions between foreign surfaces and biological fluids and tissues may soon be solved.  相似文献   

3.
The review discusses the diagnostic application of biosensors as point-of-care devices in the COVID-19 pandemic. Biosensors are important analytical tools that can be used for the robust and effective detection of infectious diseases in real-time. In this current scenario, the utilization of smart, efficient biosensors for COVID-19 detection is increasing and we have included a few smart biosensors such as smart and intelligent based biosensors, plasmonic biosensors, field effect transistor (FET) biosensors, smart optical biosensors, surface enhanced Raman scattering (SERS) biosensor, screen printed electrode (SPE)-based biosensor, molecular imprinted polymer (MIP)-based biosensor, MXene-based biosensor and metal–organic frame smart sensor. Their significance as well as the benefits and drawbacks of each kind of smart sensor are mentioned in depth. Furthermore, we have compiled a list of various biosensors which have been developed across the globe for COVID-19 and have shown promise as commercial detection devices. Significant challenges in the development of effective diagnostic methods are discussed and recommendations have been made for better diagnostic outcomes to manage the ongoing pandemic effectively.  相似文献   

4.
Despite the amount of resources that have been invested by national and international academic, government, and commercial sectors to develop affinity-based biosensor products, little obvious success has been realized through commercialization of these devices for specific applications (such as the enzyme biosensors for blood glucose analysis). Nevertheless, the fastest growing area in the biosensors research literature continues to involve advances in affinity-based biosensors and biosensor-related methods. Numerous biosensor techniques have been reported that allow researchers to better study the kinetics, structure, and (solid/liquid) interface phenomena associated with protein-ligand binding interactions. In addition, potential application areas for which affinity-based biosensor techniques show promise include clinical/diagnostics, food processing, military/antiterrorism, and environmental monitoring. The design and structural features of these devices—composed of a biological affinity element interfaced to a signal transducer—primarily determine their operational characteristics. This paper although not intended as a comprehensive review, will outline the principles of affinity biosensors with respect to potential application areas.  相似文献   

5.
电化学生物传感器快速检测DNA研究进展   总被引:2,自引:0,他引:2  
纪军  杨瑞馥 《生物技术通讯》2002,13(2):S017-S019
本简要地介绍了DNA电化学生物传感器研究的最新进展,重点讨论了改善生物传感器选择性和灵敏度的技术和方法。  相似文献   

6.
Recent advances in the development of bioelectronic nose   总被引:1,自引:0,他引:1  
The olfactory system has the ability to discriminate and identify thousands of odorant compounds at very low concentrations. Recently, many researchers have been trying to develop artificial sensing devices that are based on the olfactory system. A bioelectronic nose, which uses olfactory receptors (ORs) as sensing elements, would benefit naturally optimized molecular recognition. Accordingly, ORs can be effectively used as a biological element in bioelectronic noses. Bioelectronic nose can be classified into cell-based and protein-based biosensors. The cell-based biosensor uses living cells that express olfactory receptors as the biological sensing elements and the protein-based biosensor uses the olfactory receptor protein. The binding of odorant molecules to the ORs can be measured using various methods such as piezoelectric, optic, and electric devices. Thus, bioelectronic nose can be developed by combining the biological sensing elements with these non-biological devices. The application of bioelectronic nose in a wide range of different scientific and medical fields is essentially dependent on the development of highly sensitive and selective biosensors. These sensor systems for the rapid detection of specific odorants are crucial for environmental monitoring, anti-bioterrorism, disease diagnostics, and food safety. In this article, we reviewed recent advances in the development of bioelectronic nose.  相似文献   

7.
In this work, we describe a novel pulse mode shear horizontal-surface acoustic wave (SH-SAW) polymer coated biosensor that monitors rapid changes in both amplitude and phase. The SH-SAW sensors were fabricated on 36 degrees rotated Y-cut X propagating lithium tantalate (36 YX.LT). The sensitivity of the device to both mass loading and visco-elastic effects may be increased by using a thin guiding layer of cross-linked polymer. Two acoustic modes are excited by the electrodes in this crystalline direction. Metallisation of the propagation path of the 36 YX.LT devices allows the two modes to be discriminated. Successive polymer coatings resulted in the observation of resonant conditions in both modes as the layer thickness was increased. Using the 36 YX.LT devices, we have investigated the application of a novel pulse mode system by sensing a sequence of deposition and removal of a biological layer consisting of vesicles of the phospholipid POPC. A continuous wave system was used to verify the accuracy of the pulse mode system by sensing a series of poly(ethylene glycol) (PEG) solutions. The data clearly demonstrates the ability of the 36 YX.LT pulse mode system to provide rapid measurements of both amplitude and phase for biosensing applications.  相似文献   

8.
This study explores the feasibility of using a bullfrog fibroblast cell line (FT cells) expressing G protein coupled receptors (GPCRs) as the basis for a living cell-based biosensor. We have fabricated gold microelectrode arrays on a silicon dioxide substrate that supports long term, robust growth of the cells at room temperature and under ambient atmospheric conditions. Activation of an endogenous GPCR to ATP was monitored with an optical method that detects rises in intracellular calcium and with an electrochemical method that monitors the increased secretion of pre-loaded norepinephrine on a MEMS device. FT cells were also transfected to express reporter genes driven by several different promoters, raising the possibility that they could be modified genetically to express novel GPCRs as well. The ability to harness GPCRs for BioMEMS applications by using cells that are easy to grow on MEMS devices and to modify genetically opens the way for a new generation of devices based on these naturally selective and highly sensitive chemoreceptors.  相似文献   

9.
Although biosensors are by means suitable for continuous biomedical monitoring, due to fouling and blood clotting, in vivo performance is far from optimal. For this reason, ultrafiltration, microdialysis or open tubular flow is frequently used as interface. To secure quantitative recoveries of the analyte of interest, sampling at submicrolitre level will be necessary which in turn necessitates the development of small and versatile biosensor devices. Here, a miniaturised biosensor device, which directly can be connected to various interfaces will be presented. The biosensor device consists of a pulsefree pump and a biosensor with an internal volume of 10–20 nl. In this article, the production as well as the construction of the flow-through cell of the biosensor will be discussed. The advantages and disadvantages of several production processes will be demonstrated and a detailed protocol for the production of such a nanoliter flow-through cell will be presented. With respect to the bio-selector, several permselective membranes have been tested on their performance characteristics. Results obtained with these biosensors will be presented and discussed. Finally, a protocol based upon in situ electropolymerisation for the immobilisation of the biological component was defined and several biosensors based upon this principle have been produced and tested for the monitoring of glucose respectively lactate. To demonstrate, data obtained during a variety of in vivo studies at different clinical relevant applications will be presented.  相似文献   

10.
Elements of biosensor construction   总被引:3,自引:0,他引:3  
The diverse configurations observed in amperometric biosensors can be attributed to the manipulation of several interrelated elements in the construction of these devices. This article highlights these elements and identifies approaches taken and the factors influencing the choice of the approaches. The results of a systematic literature review over a 2.5-year period (18 May 1992–21 November 1994) encompassing all of the elements in biosensor construction are used to evaluate the prevalence, and hence, acceptance of recent approaches with critical analysis applied to certain techniques. Future trends are predicted and possible directions discussed.  相似文献   

11.
New approaches are required to understand the complex processes taking place in the smallest unit of life. Recent years have seen an increasing activity in the use of optical devices and techniques for the investigation of the properties of single cells and also populations of cells including cell to cell communication. This article reviews relevant optical technologies to date as well as new advances in biosensor development, and goes on to explore reported applications in detection of biotargets and cellular signalling pathways inside individual living cells.  相似文献   

12.
Sensory transduction in living cells is thought to involve a change of electrical parameters at the receptor membrane following specific binding events at the membrane surface. Because of the complexity of the biomembrane structure and the environmental factors associated with it, experimental bilayer lipid membranes (BLMs) have been employed for elucidation of processes at the membrane level. This is because the BLM system can be easily probed by a host of powerful and sensitive electrochemical methods. Further, recent advances in microelectronics and biotechnology suggest that the development of a BLM-based electrochemical biosensor may be possible. This paper describes the use of bilayer lipid membranes on solid substrates for analysis of sensor development problems, with relevance to a possible novel type of biomolecular device. Some electrical parameters of the new structure were measured and compared to usual BLM results. The advantages of the self-assembled structure, together with the measuring system, are discussed in terms of stability and sensitivity.  相似文献   

13.
Biological molecules such as enzymes and antibodies display a unique capacity to recognize and respond to other molecules in a way which can be exploited in the development of analytical devices. In a biosensor, the biological recognition system creates a physiochemical change proximal to a suitable transducer and thereby converts the concentration of the analyte into a quantifiable electrical signal. The design and construction of these devices requires an imaginative combination of biological, chemical, physical and engineering disciplines. Biosensors will find application in a variety of analytical fields.  相似文献   

14.
Radioactive, chromogenic, fluorescent and other labels have long provided the basis of detection systems for biomolecular interactions including immunoassays and receptor binding studies. However there has been unprecedented growth in a number of powerful label free biosensor technologies over the last decade. While largely at the proof-of-concept stage in terms of clinical applications, the development of more accessible platforms may see surface plasmon resonance (SPR) emerge as one of the most powerful optical detection platforms for the real-time monitoring of biomolecular interactions in a label-free environment.In this review, we provide an overview of SPR principles and current and future capabilities in a diagnostic context, including its application for monitoring a wide range of molecular markers of disease. The advantages and pitfalls of using SPR to study biomolecular interactions are discussed, with particular emphasis on its potential to differentiate subspecies of analytes and the inherent ability for quantitation through calibration-free concentration analysis (CFCA). In addition, recent advances in multiplex applications, high throughput arrays, miniaturisation, and enhancements using noble metal nanoparticles that promise unprecedented sensitivity to the level of single molecule detection, are discussed.In summary, while SPR is not a new technique, technological advances may see SPR quickly emerge as a highly powerful technology, enabling rapid and routine analysis of molecular interactions for a diverse range of targets, including those with clinical applicability. As the technology produces data quickly, in real-time and in a label-free environment, it may well have a significant presence in future developments in lab-on-a-chip technologies including point-of-care devices and personalised medicine.  相似文献   

15.
The inhibition of tyrosinase, used as a selective compound in amperometric biosensor for the detection of carbaryl and the possibilities of calibration of carbaryl biosensor have been studied. The kinetic analysis of biosensor data was based on the application of the biosensor dynamic model, allowing a quick calculation of independent on each other kinetic and steady-state parameters. It was found that carbaryl acts as an inhibiting substrate of tyrosinase and at low concentrations accelerates the tyrosinase-catalyzed oxidation of tyrosine by dissolved oxygen. The reaction mechanism is analogous to that usually considered for uncompetitive inhibition and the plot of kinetic parameter as a function of carbaryl concentration has a flat asymmetric maximum. Consequently, the kinetic parameter alone is not sufficient for the calibration of carbaryl biosensor and simultaneous application of other carbaryl-dependent parameters, like steady-state parameter, is essential.  相似文献   

16.
Abstract

Osteoporosis is a disease that is characterized by deterioration of bone tissue and increased risk of fracture as it leads to a decrease in bone mineral density, which is an important public health problem. Today, bone mineral density is measured by radiological techniques. Alternative techniques are needed because of the disadvantages such as excessive radiation intake, the cost of radiological techniques, and the necessity for specialist personnel for the devices. The quantitative determination of biochemical markers that play a role in bone mineralization may be a good alternative for the osteoporosis diagnosis and especially in the follow-up of treatment.

In this study, a specific and sensitive immunological biosensor, which quantitatively determines the osteocalcin molecule, has been developed to be used in the early osteoporosis diagnosis and to evaluate the response to the drug treatment. Anti-osteocalcin antibody was immobilized onto gold electrode surface via covalent immobilization method by using 6-mercaptohexanol, 1,4-butanedioldiglycidyl ether, ethanolamine, and glutaraldehyde. Immobilization steps and biosensor characterization were specified by cyclic voltammetry and electrochemical impedance spectroscopy. The detection time and range of Ocn biosensor were determined as 45?min and 10–60?pg µL?1 Ocn concentration, respectively. The Ocn biosensor was successfully applied in artificial serum samples spiked with Ocn.  相似文献   

17.
Recent advances in cholesterol biosensor   总被引:1,自引:0,他引:1  
Biosensors have recently gained much attention in the field of health care for the management of various important analytes in a biological system. The area achieved tremendous progress from the time when the first Clark electrode for measurement of glucose was realized. Advances in the biosensor design are appearing at a high rate as these devices play increasingly important roles in our daily lives. The increasing incidences of cardiovascular diseases and cardiac arrest are major cause of death of humans world over. One of the most important reasons is hypercholesterolemia, i.e. increased concentration of cholesterol in blood. Hence estimation of cholesterol level in blood is important in clinical applications. This review aims to highlight the recent advances in materials and techniques for cholesterol biosensor design and construction.  相似文献   

18.
Optical Surface plasmon resonance (SPR) biosensors represent the most advanced and developed optical label‐free biosensor technology. Optical SPR biosensors are a powerful detection and analysis tool that has vast applications in environmental protection, biotechnology, medical diagnostics, drug screening, food safety and security. This article reviews the recent development of SPR biosensor techniques, including bulk SPR and localized SPR (LSPR) biosensors, for detecting interactions between an analyte of interest in solution and a biomolecular recognition. The concepts of bulk and localized SPs and the working principles of both sensing techniques are introduced. Major sensing advances on biorecognition elements, measurement formats, and sensing platforms are presented. Finally, the discussions on both biosensor techniques as well as comparison of both SPR sensing techniques are made. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
20.
Clustering multiple devices to form a single powerful device is a common method for improving performance. Most designs of the clustering schemes in the current literature are deploying a traffic splitter in front of devices in the cluster which acts as a centralized job dispatcher splitting workloads to backend devices. In this paper, we propose a decentralized clustering scheme, with no traffic splitter deployed, as an alternative solution on building a cluster system for those devices configured in transparent mode, such as bandwidth controllers, NIPSs, and traffic monitors. Devices in the cluster process the network traffic in parallel in a decentralized manner to scale the throughput. A device can also migrate its workload to others for the purpose of load balance or fault tolerance. Experiment results suggest that the proposed scheme can effectively improve performance of transparent mode devices in terms of throughput, load balance, and fault tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号