首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exercise training produces enhanced nitric oxide (NO)-dependent, endothelium-mediated vasodilator responses of porcine coronary arterioles but not conduit coronary arteries. The purpose of this study was to test the hypothesis that exercise training increases the amount of endothelial NO synthase (eNOS) in the coronary arterial microcirculation but not in the conduit coronary arteries. Miniature swine were either exercise trained or remained sedentary for 16--20 wk. Exercise-trained pigs exhibited increased skeletal muscle oxidative capacity, exercise tolerance, and heart weight-to-body weight ratios. Content of eNOS protein was determined with immunoblot analysis in conduit coronary arteries (2- to 3-mm ID), small arteries (301- to 1,000-microm ID), resistance arteries (151- to 300-microm ID), and three sizes of coronary arterioles [large (101- to 150-microm ID), intermediate (51- to 100-microm ID), and small (<50-microm ID)]. Immunoblots revealed increased eNOS protein in some sizes of coronary arteries and arterioles but not in others. Content of eNOS was increased by 60--80% in small and large arterioles, resistance arteries, and small arteries; was increased by 10--20% in intermediate-sized arterioles; and was not changed or decreased in conduit arteries. Immunohistochemistry revealed that eNOS was located in the endothelial cells in all sizes of coronary artery. We conclude that exercise training increases eNOS protein expression in a nonuniform manner throughout the coronary arterial tree. Regional differences in shear stress and intraluminal pressures during exercise training bouts may be responsible for the distribution of increased eNOS protein content in the coronary arterial tree.  相似文献   

2.
We tested the hypothesis that short-term exercise (STEx) training and the associated increase in pulmonary blood flow during bouts of exercise cause enhanced endothelium-dependent vasorelaxation in porcine pulmonary arteries and increased expression of endothelial cell nitric oxide synthase (eNOS) and superoxide dismutase-1 (SOD-1) protein. Mature, female Yucatan miniature swine exercised 1 h twice daily on a motorized treadmill for 1 wk (STEx group, n = 7); control pigs (Sed, n = 6) were kept in pens. Pulmonary arteries were isolated from the left caudal lung lobe, and vasomotor responses were determined in vitro. Arterial tissue from the distal portion of this pulmonary artery was processed for immunoblot analysis. Maximal endothelium-dependent (ACh-stimulated) relaxation was greater in STEx (71 +/- 5%) than in Sed (44 +/- 6%) arteries (P < 0.05), and endothelium-independent (sodium nitroprusside-mediated) responses did not differ. Sensitivity to ACh was not altered by STEx training. Immunoblot analysis indicated a 3.9-fold increase in eNOS protein in pulmonary artery tissue from STEx pigs (P < 0.05) with no change in SOD-1 or glyceraldehyde-3-phosphate dehydrogenase protein levels. We conclude that STEx training enhances ACh-stimulated vasorelaxation in pulmonary arterial tissue and that this adaptation is associated with increased expression of eNOS protein.  相似文献   

3.
S Kushinsky  M Anderson 《Steroids》1974,23(4):535-548
A sensitive and efficient non-chromatographic procedure employing the Girard reagent and solvent-partitioning has been developed for the accurate radioimmunoassay (RIA) of estrone (E1) and estradiol-17β(E2) in a single 1.0 ml specimen of male or female serum. Using standard curves which permitted the discrimination of zero from 0.75–1.5 pg (p=0.05), the following mean procedural blanks (pg ± S.D.) were determined (1.0 ml water, n= 24): estrone, 2. 1 ± 1.1 (range 0–4.1); estradiol 1.0± 1.1 (range 0–3.6).A comparison of RIA of estrogens (1) in serum after separation by the Girard procedure and by TLC yielded correlation coefficients of 0.99 and 0.98 for E1 and E2 respectively. The following results (pg/ml ± S.D.) were obtained on RIA of E1 and E2 in 12 different 1.0 ml specimens of male and female serum using the Girard procedure: male. E1 (32.0 ± 9.2), E2 (24.1 ± 10.9); female, E1 (108.5 ± 60.8), E2 (126.4 ± 63.2).The intra-assay variability (c.v.) was found to be 12.6% for E1 and 9.4% for E2. The interassay variability was 14.2% for both estrogens.Twenty-four assays of E1 and E2 can be completed by one person in 2 working days.  相似文献   

4.
Our objective was to test the hypothesis that short-term exercise training (STR) of pigs increases endothelium-dependent dilation (EDD) of coronary arteries but not coronary arterioles. Female Yucatan miniature swine ran on a treadmill for 1 h, at 3.5 mph, twice daily for 7 days (STR; n = 28). Skeletal muscle citrate synthase activity was increased in STR compared with sedentary controls (Sed; n = 26). Vasoreactivity was evaluated in isolated segments of conduit arteries (1-2 mm ID, 3-4 mm length) mounted on myographs and in arterioles (50-100 microm ID) isolated and cannulated with micropipettes with intraluminal pressure set at 60 cmH(2)O. EDD was assessed by examining responses to increasing concentrations of bradykinin (BK) (conduit arteries 10(-12)-10(-6) M and arterioles 10(-13)-10(-6) M). There were no differences in maximal EDD or BK sensitivity of coronary arterioles from Sed and STR hearts. In contrast, sensitivity of conduit arteries (precontracted with PGF(2alpha)) to BK was increased significantly (P < 0.05) in STR (EC(50), 2.33 +/- 0.62 nM, n = 12) compared with Sed animals (EC(50), 3.88 +/- 0.62 nM, n = 13). Immunoblot analysis revealed that coronary arteries from STR and Sed animals had similar levels of endothelial nitric oxide synthase (eNOS). In contrast, eNOS protein was increased in STR aortic endothelial cells. Neither protein nor mRNA levels of eNOS were different in coronary arterioles from STR compared with Sed animals. STR did not alter expression of superoxide dismutase (SOD-1) protein in any artery examined. We conclude that pigs exhibit increases in EDD of conduit arteries, but not in coronary arterioles, at the onset of exercise training. These adaptations in pigs do not appear to be mediated by alterations in eNOS or SOD-1 expression.  相似文献   

5.
6.
Coronary arterioles of exercise-trained (EX) pigs have enhanced nitric oxide (NO.)-dependent dilation. Evidence suggests that the biological half-life of NO. depends in part on the management of the superoxide anion. The purpose of this study was to test the hypothesis that expression of cytosolic copper/zinc-dependent superoxide dismutase (SOD)-1 is increased in coronary arterioles as a result of exercise training. Male Yucatan pigs either remained sedentary (SED, n = 4) or were EX (n = 4) on a motorized treadmill for 16-20 wk. Individual coronary arterioles ( approximately 100-microm unpressurized internal diameter) were dissected and frozen. Coronary arteriole SOD-1 protein (via immunoblots) increased as a result of exercise training (2.16 +/- 0.35 times SED levels) as did SOD-1 enzyme activity (measured via inhibition of pyrogallol autooxidation; approximately 75% increase vs. SED). In addition, SOD-1 mRNA levels (measured via RT-PCR) were higher in EX arterioles (1.68 +/- 0.16 times the SED levels). There were no effects of exercise training on the levels of SOD-2 (mitochondrial), catalase, or p67(phox) proteins. Thus chronic aerobic exercise training selectively increases the levels of SOD-1 mRNA, protein, and enzymatic activity in porcine coronary arterioles. Increased SOD-1 could contribute to the enhanced NO.-dependent dilation previously observed in EX porcine coronary arterioles by improving management of superoxide in the vascular cell environment, thus prolonging the biological half-life of NO.  相似文献   

7.
We hypothesized that exercise training would lead to enhanced endothelium-dependent vasodilation in porcine pulmonary arteries. Pulmonary artery rings (2- to 3-mm OD) were obtained from female Yucatan miniature swine with surgically induced coronary artery occlusion (ameroid occluder). Exercise training was performed for 16 wk, and vasomotor responses were studied by using standard isometric techniques. Contractile responses to 80 mM KCl, isosmotic KCl (10-100 mM), and norepinephrine (10(-8) to 10(-4) M) did not differ between sedentary (Sed) and exercise-trained (Ex) pigs. Relaxation was assessed to endothelium-dependent and endothelium-independent vasodilators after norepinephrine contraction. Pulmonary arteries of Ex pigs exhibited greater maximal relaxation to ACh (61.9 +/- 3.5%) than did those of Sed pigs (52.3 +/- 3.9%; P < 0.05). Endothelium-independent relaxation to sodium nitroprusside did not differ. Inhibition of nitric oxide synthase significantly decreased acetylcholine-induced relaxation, with greater inhibition in arteries from Ex pigs (P < 0.05). Inhibition of cyclooxygenase enhanced relaxation to acetylcholine in arteries from Sed pigs. We conclude that exercise training enhances endothelium-dependent (ACh-mediated) vasorelaxation in pulmonary arteries by mechanisms of increased reliance on nitric oxide and reduced production of a prostanoid constrictor.  相似文献   

8.
Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.  相似文献   

9.
Acute exercise increases myocardial tolerance to ischemia-reperfusion (I-R) injury in male but not in female rat hearts, possibly due to a decreased heat shock protein 70 (Hsp70) response in the female hearts. This study examined whether repetitive exercise training would increase Hsp70 and myocardial tolerance to I-R injury in female rat hearts. Adaptations in myocardial manganese superoxide dismutase (MnSOD) and endothelial nitric oxide synthase (eNOS) were also assessed. Ten-week old male (M) and female (F) Sprague-Dawley rats (n = 40 total) exercise-trained for 14 wk; the last 8 wk consisted of running 1 h at 30 m/min (2% incline), 5 days/wk. Following training, left ventricle mechanical function (LVMF) was monitored for 30 min of reperfusion following 30 min of global ischemia (Langendorff procedure). Myocardial Hsp70 content was not different in M and F control groups, while increases were observed in both trained groups (M greater than F; P < 0.05). Although MnSOD content did not differ between groups, endothelial nitric oxide synthase (eNOS) levels were decreased in F, with no change in M, following training (P < 0.05). Hearts from control F demonstrated a greater recuperation of all indices of LVMF following I-R compared with control M hearts (P < 0.05). Hearts of trained M exhibited improved recovery of LVMF (left ventricular diastolic pressure, left ventricular end-diastolic pressure, +dP/dt, -dP/dt) during reperfusion compared with control M hearts (P < 0.05). In contrast, hearts of trained F did not show any change in recovery from I-R. Hence, exercise training is more beneficial to M than F in improving myocardial function following I-R injury.  相似文献   

10.
Moderate-intensity treadmill running can alter male Apc(Min/+) mouse polyp formation. This purpose of this study was to examine whether exercise mode differentially affects Apc(Min/+) mouse intestinal polyp development in male and female mice. Male and female Apc(Min/+) mice were randomly assigned to control, treadmill (18 m/min; 60 min/day; 6 days/wk), or voluntary wheel running (24-h access) groups. Nine weeks of training decreased total intestinal polyps by 29% in male treadmill runners (66 +/- 9; P = 0.038) compared with male controls (93 +/- 7). The number of large polyps (>/=1-mm diameter) were also reduced by 38% in male treadmill runners (49 +/- 6; P = 0.005) compared with male controls (79 +/- 6). Treadmill running in female Apc(Min/+) mice and wheel running in both genders did not affect polyp number or size. Spleen weight decreased in male treadmill runners (91 +/- 9 mg; P = 0.011) and wheel runners (75 +/- 6 mg; P = 0.004) compared with controls (141 +/- 13 mg). Plasma IL-6 was reduced by 96% in male treadmill runners (1.2 +/- 0.6 pg/ml) and 78% in male wheel runners (6.6 +/- 3.3 pg/ml) compared with control mice (27.9 +/- 2.8 pg/ml; P < 0.05). Female mice responded similarly with an 86% decrease in plasma IL-6 with treadmill running (3.2 +/- 1.2 pg/ml) and 90% decrease with wheel running (2.9 +/- 2.0 pg/ml) compared with control mice (21.1 +/- 5.3 pg/ml; P < 0.05). The crypt depth-to-villus height ratio in the intestine, an indirect marker of intestinal inflammation, decreased by 21 (P = 0.024) and 24% (P = 0.029), respectively, in male and female treadmill runners but not wheel runners. Physical activity-induced attenuation of intestinal polyp number and size is dependent on exercise mode and differs between genders. The modulation of systemic and intestinal inflammation may also depend on exercise mode.  相似文献   

11.
We tested the hypothesis that exercise training (Ex) attenuates hypercholesterolemia-induced impairment of endothelium-dependent relaxation (EDR) in male porcine coronary arteries [left anterior descending coronary arteries (LAD)] by increasing nitric oxide (NO) release [due to increased endothelial NO synthase (NOS) expression] and/or increased bioactivity of NO. Adult male pigs were fed a normal-fat (NF) or high-fat (HF) diet for 20-24 wk. Pigs were Ex or remained sedentary (Sed) for 16-20 wk, beginning after 4 wk on diet. Four groups of pigs were used: NF-Sed, NF-Ex, HF-Sed, and HF-Ex. HF enhanced LAD contractions induced by KCl, aggregating platelets (AP), and serotonin (5-HT). AP and 5-HT produced EDR after blockade of cyclooxygenase with indomethacin (Indo) and smooth-muscle 5-HT(2) receptors with ketanserin. HF impaired EDR induced by AP, 5-HT, and bradykinin. Results indicate a decreased contribution of NO to EDR in HF-Sed LADs, because the percentage of bradykinin-induced EDR inhibited by N(G)-nitro-L-arginine methyl ester was 27% in NF-Sed and 34% in NF-Ex but only 17% in HF-Sed. Also, N(G)-nitro-L-arginine methyl ester + Indo results indicate that release of an Indo-sensitive vasoconstrictor contributes to blunted EDR in HF-Sed LAD. Immunoblot and immunohistochemistry results indicate the following: 1) LAD endothelial NOS protein content was similar among groups; 2) HF decreased LAD superoxide dismutase (SOD) but increased caveolin-1 content; and 3) Ex increased SOD content of HF LADs. We conclude that HF impairs EDR by impairing the contribution of NO released from NOS (due to decreased SOD and increased caveolin-1 protein content) and by production of an Indo-sensitive vasoconstrictor. Ex preserves EDR in HF LADs by decreasing the production of the constrictor and increasing NO-release by NOS and/or NO bioactivity and bioavailability.  相似文献   

12.
The purpose of this study was to test the hypothesis that the content of endothelial nitric oxide synthase (eNOS) protein (eNOS protein/g total artery protein) increases with decreasing artery diameter in the coronary arterial tree. Content of eNOS protein was determined in porcine coronary arteries with immunoblot analysis. Arteries were isolated in six size categories from each heart: large arteries [301- to 2,500-microm internal diameter (ID)], small arteries (201- to 300-microm ID), resistance arteries (151- to 200-microm ID), large arterioles (101- to 150-microm ID), intermediate arterioles (51- to 100-microm ID), and small arterioles(<50-microm ID). To obtain sufficient protein for analysis from small- and intermediate-sized arterioles, five to seven arterioles 1-2 mm in length were pooled into one sample for each animal. Results establish that the number of smooth muscle cells per endothelial cell decreases from a number of 10 to 15 in large coronary arteries to 1 in the smallest arterioles. Immunohistochemistry revealed that eNOS is located only in endothelial cells in all sizes of coronary artery and in coronary capillaries. Contrary to our hypothesis, eNOS protein content did not increase with decreasing size of coronary artery. Indeed, the smallest coronary arterioles had less eNOS protein per gram of total protein than the large coronary arteries. These results indicate that eNOS protein content is greater in the endothelial cells of conduit arteries, resistance arteries, and large arterioles than in small coronary arterioles.  相似文献   

13.
Growth-related oncogene-alpha (GRO-alpha) is a member of the CXC chemokine family, which is involved in the inflammatory process including atherosclerosis. We hypothesized that GRO-alpha may affect endothelial functions in both porcine coronary arteries and human coronary artery endothelial cells (HCAECs). Vasomotor function was analyzed in response to thromboxane A2 analog U-46619 for contraction, bradykinin for endothelium-dependent vasorelaxation, and sodium nitroprusside (SNP) for endothelium-independent vasorelaxation. In response to 10(-6) M bradykinin, GRO-alpha (50 and 100 ng/ml) significantly reduced endothelium-dependent vasorelaxation by 34.73 and 48.8%, respectively, compared with controls (P < 0.05). There were no changes in response to U-46619 or SNP between treated and control groups. With the lucigenin-enhanced chemiluminescence assay, superoxide anion production in GRO-alpha-treated vessels (50 and 100 ng/ml) was significantly increased by 50 and 86%, respectively, compared with controls (P < 0.05). With real-time PCR analysis, endothelial nitric oxide synthase (eNOS) mRNA levels in porcine coronary arteries and HCAECs after GRO-alpha treatment were significantly decreased compared with controls (P < 0.05). The eNOS protein levels by both immunohistochemistry and Western blot analyses were also decreased in GRO-alpha-treated vessels. Antioxidant seleno-l-methionine and anti-GRO-alpha antibody effectively blocked these effects of GRO-alpha on both porcine coronary arteries and HCAECs. In addition, GRO-alpha immunoreactivity was substantially increased in the atherosclerotic regions compared with nonatherosclerotic regions in human coronary arteries. Thus GRO-alpha impairs endothelium-dependent vasorelaxation in porcine coronary arteries through a mechanism of overproduction of superoxide anion and downregulation of eNOS. GRO-alpha may contribute to human coronary artery disease.  相似文献   

14.
Aging impairs shear-stress-dependent dilation of arteries via increased superoxide production, decreased SOD activity, and decreased activation of endothelial nitric oxide (NO) synthase (eNOS). In the present study, we investigated whether chronic increases in shear stress, elicited by increases in blood flow, would improve vascular endothelial function of aged rats. To this end, second-order mesenteric arteries of young (6 mo) and aged (24 mo) male Fischer-344 rats were selectively ligated for 3 wk to elevate blood flow in a first-order artery [high blood flow (HF)]. An in vitro study was then conducted on first-order arteries with HF and normal blood flow (NF) to assess shear stress (1, 10, and 20 dyn/cm(2))-induced release of NO into the perfusate. In HF arteries of both age groups, shear stress-induced NO production increased significantly. In 24-mo-old rats, the reduced shear stress-induced NO production in NF arteries was normalized by HF to a level similar to that in NF arteries of 6-mo-old rats. The increased NO production in HF arteries of 24-mo-old rats was associated with increased shear stress-induced dilation, expression of eNOS protein, and shear stress-induced eNOS phosphorylation. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, reduced shear stress-induced eNOS phosphorylation and vasodilation. Superoxide production decreased significantly in HF compared with NF arteries in 24-mo-old rats. The decreased superoxide production was associated with significant increases in CuZn-SOD and extracellular SOD protein expressions and total SOD activity. These results suggest that stimulation with chronic HF restores shear-stress-induced activation of eNOS and antioxidant ability in aged arteries.  相似文献   

15.
We previously reported that canine collateral-dependent coronary arteries exhibit impaired relaxation to adenosine but not sodium nitroprusside. In contrast, exercise training enhances adenosine sensitivity of normal porcine coronary arteries. These results stimulated the hypothesis that chronic coronary occlusion and exercise training produce differential effects on cAMP- versus cGMP-mediated relaxation. To test this hypothesis, Ameroid occluders were surgically placed around the proximal left circumflex coronary artery (LCx) of female Yucatan miniature swine 8 wk before initiating sedentary or exercise training (treadmill run, 16 wk) protocols. Relaxation to the cAMP-dependent vasodilators adenosine (10(-7) to 10(-3) M) and isoproterenol (3 x 10(-8) to 3 x 10(-5) M) were impaired in collateral-dependent LCx versus nonoccluded left anterior descending (LAD) arterial rings isolated from sedentary but not exercise-trained pigs. Furthermore, adenosine-mediated reductions in simultaneous tension and myoplasmic free Ca(2+) were impaired in LCx versus LAD arteries isolated from sedentary but not exercise-trained pigs. In contrast, relaxation in response to the cAMP-dependent vasodilator forskolin (10(-9) to 10(-5) M) and the cGMP-dependent vasodilator sodium nitroprusside (10(-9) to 10(-4) M) was not different in LCx versus LAD arteries of sedentary or exercise-trained animals. These data suggest that chronic occlusion impairs receptor-dependent, cAMP-mediated relaxation; receptor-independent cAMP- and cGMP-mediated relaxation were unimpaired. Importantly, exercise training restores cAMP-mediated relaxation of collateral-dependent coronary arteries.  相似文献   

16.
We investigated effects of exogenous leukotrienes (C4, D4, or E4) on levels of prostanoids in cerebrospinal fluid in newborn pigs (1-5 days). A "closed" cranial window was placed over the parietal cortex. Pial arterial diameter was measured with a microscope and electronic micrometer system. Levels in cerebrospinal fluid (CSF) of 6-keto-Prostaglandin F1 alpha (6-keto-PGF1 alpha), Thromboxane B2 (TXB2), and Prostaglandin E2 (PGE2) were measured by radioimmunoassay. Topical application of leukotrienes C4, D4, or E4 (5,000 ng/ml) similarly constricted pial arteries by 15 +/- 2% (n = 14) (mean +/- SEM). In addition, leukotrienes increased levels of 6-keto-PGF1 alpha from 806 +/- 136 to 1,612 +/- 304 pg/ml (n = 13), TXB2 from 161 +/- 31 to 392 +/- 81 pg/ml (n = 10), and PGE2 from 2,271 +/- 342 to 4,636 +/- 740 pg/ml (n = 13). Each type of leukotriene had similar effects on prostanoid synthesis. In other experiments (n = 5), we found that 2.0 ng/ml PGE2 in CSF dilated pial arteries by 24 +/- 8% and that 1.0 ng/ml PGI2 dilated pial arteries by 15 +/- 6%. These results indicate that leukotrienes are able to increase levels of prostanoids in cerebral cortex.  相似文献   

17.
The pathogenesis of chronic mountain sickness (CMS) may involve vasoactive peptides. The aim of this study was to investigate associations between CMS and levels of B-type natriuretic peptide (BNP), vascular endothelial growth factor (VEGF), endothelin-1 (ET-1), and endothelial nitric oxide synthase (eNOS). A total of 24 patients with CMS and 50 control subjects residing at 4,300 m participated in this study. Mean pulmonary arterial pressure (mPAP) was measured by echocardiography. Serum BNP, VEGF, ET-1, and eNOS were measured. Receiver operator characteristic curves to assess the balance of sensitivity and specificity for CMS were constructed. As a result, patients with CMS had significantly greater mPAP compared with controls and had lower arterial O(2) saturation (Sa(O(2))). Both BNP and ET-1 correlated positively with mPAP and negatively with Sa(O(2)), whereas serum VEGF levels were inversely correlated with Sa(O(2)); eNOS correlated negatively with mPAP and positively with Sa(O(2)). Median concentrations of BNP were greater in patients with CMS compared with those without CMS: 369 pg/ml [interquartile range (IQR) = 336-431] vs. 243 pg/ml (IQR = 216-279); P < 0.001. Similarly, concentrations of VEGF [543 pg/ml (IQR = 446-546) vs. 243 pg/ml (IQR = 216-279); P < 0.001] and ET-1 [14.7 pg/ml (IQR = 12.5-17.9) vs. 11.1 pg/ml (IQR = 8.7-13.9); P = 0.05] were higher in those with CMS compared with those without, whereas eNOS levels were lower in those with CMS [8.90 pg/ml (IQR 7.59-10.8) vs. 11.2 pg/ml (9.13-13.1); P < 0.001]. The areas under the receiver operator characteristic curves for diagnosis of CMS were 0.91, 0.93, 0.77, and 0.74 for BNP, VEGF, ET-1, and eNOS, respectively. In age- and biomarker-adjusted logistic regression, BNP and VEGF were positively predictive of CMS, whereas eNOS was inversely predictive. In conclusion, severe chronic hypoxemia and consequent pulmonary hypertension in patients with CMS may stimulate release of natriuretic peptides and angiogenic cytokines. These vasoactive peptides may play an important role in the pathogenesis and clinical expression of CMS and may indicate potential prognostic factors in CMS that could serve as targets for therapeutic trials or clinical decision making.  相似文献   

18.
19.
We hypothesized that lipoxygenase metabolites of arachidonic acid might be produced during endotoxin-induced acute respiratory failure (ARF) observed in young pigs. We used radioimmunoassay (RIA) to determine the presence of 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE in bronchoalveolar lavage fluid (BALF) of saline (n = 12)- and endotoxin (n = 18)-treated pigs. Endotoxin, infused at 5 micrograms/kg for 1 hr followed by 2 micrograms/kg/hr for an average of 3 hrs, caused pulmonary hypertension, a biphasic increase in pulmonary vascular resistance, hypoxemia, bronchoconstriction, leukopenia, and thrombocytopenia. Relative to saline controls, the levels of immunoreactive (i)-5-HETE (816 +/- 209 pg/ml), i-12-HETE (1589 +/- 517 pg/ml), and i-15-HETE (448 +/- 78 pg/ml) were significantly (P less than 0.05) increased in BALF recovered from endotoxemic pigs at postmortem. Relative to control BALF i-HETE concentrations, the endotoxin values were 3.5x, 5.1x, and 2.8x higher for i-5-HETE, i-12-HETE, and i-15-HETE, respectively. We conclude that during porcine endotoxemia, the 5-, 12-, and 15-lipoxygenase pathways are activated and that HETES might be involved in the pathophysiology of endotoxin-induced ARF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号