首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Finerty PJ  Bass BL 《Biochemistry》1999,38(13):4001-4007
dsRBP-ZFa is a Xenopus zinc finger protein that binds dsRNA and RNA-DNA hybrids with high affinity and in a sequence-independent manner. The protein consists of a basic N-terminal region with seven C2H2 zinc finger motifs and an acidic C-terminal region that is not required for binding. The last four zinc finger motifs, and the linkers that join them, are nearly identical repeats, while the first three motifs and their linkers are each unique. To identify which regions of the protein are involved in nucleic acid binding, we examined the ability of five protein fragments to bind dsRNA and RNA-DNA hybrids. Our studies reveal that a fragment encompassing the three N-terminal, unique zinc finger motifs and another encompassing the last three of the nearly identical motifs have binding properties similar to the full-length protein. Since these two fragments do not share zinc finger motifs of the same sequence, dsRBP-ZFa must contain more than one type of zinc finger motif capable of binding dsRNA. As with the full-length protein, ssRNA and DNA do not significantly compete for dsRNA binding by the fragments.  相似文献   

2.
The p53-induced mouse wig-1 gene encodes a Cys2His2-type zinc finger protein of unknown function. The zinc fingers in wig-1 are connected by long (56–75) amino acid linkers. This distribution of zinc finger domains resembles that of the previously described double-stranded (ds)RNA-binding proteins dsRBP-ZFa and JAZ. Ectopically expressed FLAG-tagged mouse wig-1 protein localized to nuclei and in some cells to nucleoli, whereas GFP-tagged mouse wig-1 localized primarily to nucleoli. Electrophoretic mobility shift assay using a recombinant GST–wig-1 fusion protein showed that wig-1 preferentially binds dsRNA rather than single-stranded RNA or dsDNA. A set of deletion/truncation mutants of wig-1 was tested to determine the dsRNA-binding domain(s) or region(s) in wig-1 that is involved in the stabilization of wig-1–dsRNA complexes in vitro. This revealed that the first zinc finger in wig-1 is essential for binding to dsRNA, whereas zinc fingers 2 and 3 are dispensable. wig-1 protein expressed in mammalian cells also showed a high affinity for dsRNA. wig-1 represents the first confirmed p53-induced gene that encodes a dsRNA-binding protein. This suggests that dsRNA binding plays a role in the p53-dependent stress response.  相似文献   

3.
4.
Exportin-5 is a nuclear export receptor for certain classes of double-stranded RNA (dsRNA), including pre-micro-RNAs, viral hairpin RNAs, and some tRNAs. It can also export the RNA binding proteins ILF3 and elongation factor EF1A. However, the rules that determine which RNA binding proteins are exportin-5 cargoes remain unclear. JAZ possesses an unusual dsRNA binding domain consisting of multiple C2H2 zinc fingers. We found that JAZ binds to exportin-5 in a Ran-GTP- and dsRNA-dependent manner. Exportin-5 stimulates JAZ shuttling, and gene silencing of exportin-5 reduces shuttling. Recombinant exportin-5 also stimulates nuclear export of JAZ in permeabilized cells. JAZ also binds to ILF3, and surprisingly, this interaction is RNA independent, even though it requires the dsRNA binding domains of ILF3. Exportin-5, JAZ, and ILF3 can form a heteromeric complex with Ran-GTP and dsRNA, and JAZ increases ILF3 binding to exportin-5. JAZ does not contain a classical nuclear localization signal, and in digitonin-permeabilized cells, nuclear accumulation of JAZ does not require energy or cytosol. Nonetheless, low temperatures prevent JAZ import, suggesting that nuclear entry does not occur via simple diffusion. Together, these data suggest that JAZ is exported by exportin-5 but translocates back into nuclei by a facilitated diffusion mechanism.  相似文献   

5.
6.
Several zinc finger proteins have been discovered recently that bind specifically to double-stranded RNA. These include the mammalian JAZ and wig proteins, and the seven-zinc finger protein ZFa from Xenopus laevis. We have determined the solution structure of a 127 residue fragment of ZFa, which consists of two zinc finger domains connected by a linker that remains unstructured in the free protein in solution. The first zinc finger consists of a three-stranded beta-sheet and three helices, while the second finger contains only a two-stranded sheet and two helices. The common structures of the core regions of the two fingers are superimposable. Each finger has a highly electropositive surface that maps to a helix-kink-helix motif. There is no evidence for interactions between the two fingers, consistent with the length (24 residues) and unstructured nature of the intervening linker. Comparison with a number of other proteins shows similarities in the topology and arrangement of secondary structure elements with canonical DNA-binding zinc fingers, with protein interaction motifs such as FOG zinc fingers, and with other DNA-binding and RNA-binding proteins that do not contain zinc. However, in none of these cases does the alignment of these structures with the ZFa zinc fingers produce a consistent picture of a plausible RNA-binding interface. We conclude that the ZFa zinc fingers represent a new motif for the binding of double-stranded RNA.  相似文献   

7.
8.
9.
Rakitina DV  Yelina NE  Kalinina NO 《FEBS letters》2006,580(21):5077-5083
A small regulatory gammab protein of the Poa semilatent hordeivirus (PSLV) contains two zinc finger-like motifs separated by a basic motif in the N-terminal part and a C-terminal coiled-coil motif. Interactions of the recombinant PSLV gammab protein and its mutants with various RNAs (ssRNA, dsRNA, ssRNA oligonucleotides) and ssDNA were studied in gel-shift assays. The results demonstrated that zinc ions are essential for effective nucleic-acid-binding activity of the gammab protein, suggesting the important role of zinc finger motifs in these interactions. Deletion of the C-proximal coiled-coil region did not affect highly cooperative RNA-protein binding, indicating that the N-terminal part of the protein contributes to the protein-protein interactions needed for the protein-RNA cooperativity.  相似文献   

10.
11.
Zic family proteins have five C2H2-type zinc finger motifs. The Zic-zinc finger domains show high homology to the corresponding domains of the Gli and Glis families, which also contain five C2H2-type zinc finger motifs. The zinc finger motifs of the proteins of these three protein families form an alpha-helix conformation in solution. The addition of oligo DNA that included a Gli-binding sequence increased the alpha-helix content estimated by using circular dichroism spectroscopy. Comparison of the Zic-, Gli-, and Glis-zinc fingers indicated that the alpha-helix content after the addition of oligo DNA correlated well with the affinity of each zinc finger for the oligo DNA (correlation coefficient, 0.85). The importance of the zinc ion for protein folding was reflected in a reduction in the alpha-helix content upon removal of the zinc ion. Owing to the compact globular structure, the alpha-helix structure of the proteins of these three protein families is extremely thermally stable. These results suggest that the alpha-helix structure is important for DNA binding and profoundly related to functional and structural diversity among the three families.  相似文献   

12.
Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues.  相似文献   

13.
Multiple genes encoding zinc finger domains are expressed in human T cells   总被引:13,自引:0,他引:13  
Proteins containing zinc finger domains have been implicated in developmental control of gene expression in Drosophila, Xenopus, mouse, and humans. Multiple cDNAs encoding zinc (II) finger structures were isolated from human cell lines of T-cell origin to explore whether zinc finger genes participate in the differentiation of human hematopoietic cells. Initial restriction analysis, genomic Southern blotting, and partial sequence comparisons revealed at least 30 nonoverlapping cDNAs designated cKox(1-30) encoding zinc finger motifs. Analysis of cKox1 demonstrated that Kox1 is a single-copy gene that is expressed in a variety of hematopoietic and nonhaematopoietic cell lines. cKox1 encodes 11 zinc fingers that were shown to bind zinc when expressed as a beta-gal-Kox1 fusion protein. Further analysis of the predicted amino acid sequence revealed a heptad repeat of leucines NH2-terminal to the finger region, which suggests a potential domain for homo- or heterodimer protein formation. On the basis of screening results it was estimated that approximately 70 zinc finger genes are expressed in human T cells. Zinc finger motifs are probably present in a large family of proteins with quite diverse and distinct functions. However, comparisons of individual finger regions in cKox1 with finger regions of cKox2 to cKox30 showed that some zinc fingers are highly conserved in their putative alpha-helical DNA binding region, supporting the notion of a zinc finger-specific DNA recognition code.  相似文献   

14.
15.
16.
17.
In humans and mice, the Cys2His2 zinc finger protein PRDM9 binds to a DNA sequence motif enriched in hotspots of recombination, possibly modifying nucleosomes, and recruiting recombination machinery to initiate Double Strand Breaks (DSBs). However, since its discovery, some researchers have suggested that the recombinational effect of PRDM9 is lineage or species specific. To test for a conserved role of PRDM9-like proteins across taxa, we use the Drosophila pseudoobscura species group in an attempt to identify recombination associated zinc finger proteins and motifs. We leveraged the conserved amino acid motifs in Cys2His2 zinc fingers to predict nucleotide binding motifs for all Cys2His2 zinc finger proteins in Drosophila pseudoobscura and identified associations with empirical measures of recombination rate. Additionally, we utilized recombination maps from D. pseudoobscura and D. miranda to explore whether changes in the binding motifs between species can account for changes in the recombination landscape, analogous to the effect observed in PRDM9 among human populations. We identified a handful of potential recombination-associated sequence motifs, but the associations are generally tenuous and their biological relevance remains uncertain. Furthermore, we found no evidence that changes in zinc finger DNA binding explains variation in recombination rate between species. We therefore conclude that there is no protein with a DNA sequence specific human-PRDM9-like function in Drosophila. We suggest these findings could be explained by the existence of a different recombination initiation system in Drosophila.  相似文献   

18.
19.
20.
The muscleblind‐like (MBNL) proteins 1, 2, and 3, which contain four CCCH zinc finger motifs (ZF1–4), are involved in the differentiation of muscle inclusion by controlling the splicing patterns of several pre‐mRNAs. Especially, MBNL1 plays a crucial role in myotonic dystrophy. The CCCH zinc finger is a sequence motif found in many RNA binding proteins and is suggested to play an important role in the recognition of RNA molecules. Here, we solved the solution structures of both tandem zinc finger (TZF) motifs, TZF12 (comprising ZF1 and ZF2) and TZF34 (ZF3 and ZF4), in MBNL2 from Homo sapiens. In TZF12 of MBNL2, ZF1 and ZF2 adopt a similar fold, as reported previously for the CCCH‐type zinc fingers in the TIS11d protein. The linker between ZF1 and ZF2 in MBNL2 forms an antiparallel β‐sheet with the N‐terminal extension of ZF1. Furthermore, ZF1 and ZF2 in MBNL2 interact with each other through hydrophobic interactions. Consequently, TZF12 forms a single, compact global fold, where ZF1 and ZF2 are approximately symmetrical about the C2 axis. The structure of the second tandem zinc finger (TZF34) in MBNL2 is similar to that of TZF12. This novel three‐dimensional structure of the TZF domains in MBNL2 provides a basis for functional studies of the CCCH‐type zinc finger motifs in the MBNL protein family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号