首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have isolated from human plasma a unique subclass of the high density lipoproteins (HDL) which contains a potent lipid transfer inhibitor protein (LTIP) that inhibited cholesteryl ester, triglyceride, and phospholipid transfer mediated by the lipid transfer protein, LTP-I, and phospholipid transfer mediated by the phospholipid transfer protein, LTP-II. This HDL subclass not only inhibited cholesteryl ester transfer from HDL to LDL or VLDL, but also inhibited cholesteryl ester transfer from HDL to HDL. The inhibitor protein was isolated by sequential chromatography of human whole plasma on dextran sulfate-cellulose, phenyl-Sepharose, and chromatofocusing chromatography. Isolated LTIP had the following characteristics: an apparent molecular weight of 29,000 +/- 1,000, (n = 10) by sodium dodecyl sulfate gel electrophoresis, and an isoelectric point of 4.6 as determined by chromatofocusing. LTIP remained functional following delipidation with organic solvents. Antibody to LTIP was produced, and an immunoaffinity column of the anti-LTIP was prepared. Passage of human, rat, or pig whole plasma over the anti-LTIP column enhanced cholesteryl ester transfer activity in human (17%), pig (200%), and rat plasma (125%). The HDL subclass containing LTIP was isolated from whole human HDL (d 1.063-1.21 g/ml) by immunoaffinity chromatography. The isolated LTIP-HDL complex was shown to: i) contain about 60% protein and 40% lipid, ii) have alpha and pre-beta electrophoretic mobility, iii) have particle size distribution somewhat smaller than whole HDL, about 100,000 daltons, as determined by gradient gel electrophoresis, and iv) contain only a small amount of apoA-I (less than 5%) and a trace amount of apoA-II. Assay of ultracentrifugally obtained lipoprotein fractions revealed that approximately 85% of the total functional LTIP activity was in the d 1.063-1.21 g/ml HDL fraction. Furthermore, immunoblot analysis of whole plasma by nondenaturing gradient gel electrophoresis revealed that LTIP was found predominantly in particles in the size range of HDL. This unique HDL subclass may play an important role in the regulation of plasma lipid transfer and metabolism.  相似文献   

2.
Treponeme outer envelope: chemical analysis.   总被引:6,自引:0,他引:6  
The chemical composition of the outer envelope (OE) of Treponema phagedenis biovar Kazan 5 was investigated. After cultivation in a lipid-defined medium, the OE was removed from the cells with 0.7 mM sodium dodecyl sulfate. The solubilized OE was reaggregated by dialysis against 20 mM MgCl2, washed, lyophilized, and subjected to chemical analysis. The average yield of OE was 14.6% of the whole cell (WC) dry weight. The magnesium content was 0.683 mug/mg OE. Peptidoglycan components such as muramic acid and ornithine were detected in the WC but not in the OE, and diaminopimelic acid was absent in both WC and OE. The OE contained protein (60-73%), carbohydrate (1-2%), and lipid (4-5%), primarily polar lipid. The major polar lipids were monogalactosyldiglyceride (43%) and phospholipid (57%), of which phosphatidylcholine was the main phospholipid component, with phosphatidylethanolamine present in lesser amounts.  相似文献   

3.
The chemical composition of highly purified plasma membrane preparations from a series of malignant Chinese hamster ovary (CHO) cell lines were undertaken to ascertain if neutral lipid, including cholesteryl ester and triacylglycerol, were present. Triacylglycerols (33-41 nmol/mg total lipid) and cholesteryl ester (226-271 nmol/mg) were measured in the plasma membranes and differences in the chemical composition of these membranes recorded. The most significant difference was a gradual decrease in the level of free cholesterol from wild type (312 +/- 7 nmol/mg total plasma membrane lipid), Pod RII-6 (268 +/- 64 nmol/mg total plasma membrane lipid), Col R-22 (243 +/- 39 nmol/mg total plasma membrane lipid) to EOT (204 +/- 20 nmol/mg total plasma membrane lipid), with a concomitant increase in the degree of saturation of the cholesteryl ester fatty acids, particularly palmitic acid. No statistically significant differences were apparent in the chemical composition of the whole cells in this series. The one-dimensional (1D) 1H-NMR spectra of the four malignant cell lines showed a gradation in intensity of lipid resonances, in the order of wild type, Pod RII-6, Col R-22 and EOT, with EOT having the strongest lipid spectrum. Interestingly, the increase in acyl-chain signal intensities in the 1H-NMR spectra of this series of CHO cells and emergence of signals from cholesterol and/or cholesteryl ester, coincide with alterations in the amount of free cholesterol and the degree of saturation of the fatty-acyl chain of the esterified cholesterol in the plasma membranes. It is our hypothesis that, together, cholesteryl ester and triacylglycerol form domains in the plasma membrane and that when the cholesteryl ester has a largely saturated fatty acid content, the lipids are in isotropic liquid phase and hence visible by NMR.  相似文献   

4.
5.
The stability of stratum corneum (SC) liposomes against the action of surfactants has been revised. To this end, two types of vesicles were used; vesicles formed with the lipid and protein material extracted from SC, and lipid mixtures approximating the SC composition. In this case, the proportion of ceramides (Cer) and cholesteryl sulfate (Chol-sulf) was varied and the relative proportion of the other lipids remained constant. The increasing presence of these two lipids increased the resistance of liposomes against the action of the anionic surfactant sodium dodecyl sulfate (SDS). The rise in the cell-to-cell cohesion that occurred in recessive X-linked ichthyosis due to the accumulation of Chol-sulf could be associated in part to the enhanced stability of (Chol-sulf)-enriched bilayers. It is noteworthy that the surfactant partitioning between bilayers and the aqueous phase increased and decreased, respectively, as the proportion of Cer and Chol-sulf increased. This effect may be attributed to the variations in both the electrostatic interactions lipid-surfactant (electrostatic repulsion between the sulfate groups of both Chol-sulf and SDS), and the hydrophilic lipophilic balance of the lipid mixtures, in which Cer is replaced by the major polar lipid of the mixture (Chol-sulf). The fact that the free surfactant concentration was always smaller than its critical micelle concentration indicates that the permeability alterations were mainly ruled by the action of surfactant monomers, in agreement with the results reported for sublytic interactions of this surfactant with PC liposomes.  相似文献   

6.
Lipids of chicken epidermis   总被引:1,自引:0,他引:1  
The lipids from chicken epidermis were analyzed by a combination of quantitative thin-layer and gas-liquid chromatography and by chemical and spectroscopic methods. The lipid groups present included wax diesters (34%), triglycerides (32%), sterols (11%), phospholipids (11%), nonphosphorus-containing sphingolipids (3%), beta-D-glucosylsterols (3%), 6-O-acyl-beta-D-glucosylsterols (2%), steryl esters (1%), cholesteryl sulfate (1%), and free fatty acids (1%). The major phospholipids were phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, and the sphingolipids included ceramides, glucosylceramides, O-acylceramides, and O-acylglucosylceramides. Glucosylsterols and acylglucosylsterols have not been found in mammalian skin, and may be relevant to the evolutionary history of the epidermal water barrier. The wax diesters contained mainly 16-, 18-, and 20-carbon saturated fatty acids esterified to 20- through 24-carbon threo and erythro 2,3-diols, while the chicken epidermal triglycerides contained some very long-chain (26-40 carbon) saturated fatty acids. These wax diesters and unusual triglycerides may be of significance in human health.  相似文献   

7.
Epidermal acylglucosylceramides (AGC) and acylceramides (AC) cause aggregation and stacking of stratum corneum lipid liposomes formed from a lipid mixture containing epidermal ceramides (40%), cholesterol (25%), palmitic acid (25%), and cholesteryl sulfate (10%). This demonstrates the ability of these sphingolipids to hold adjacent bilayers in close apposition and their roles in the assembly of lamellar structures in the epidermis. However, AGC and AC in their hydrogenated form also caused aggregation and stacking of the stratum corneum lipid liposomes. This throws into doubt the proposed structural specificity of linoleate in the function of AGC and AC as molecular rivets in the assembly of the epidermal lamellar granules and the stratum corneum intercellular lamellae, respectively.  相似文献   

8.
The cholesteryl oleate-POPC dispersions (1:3, mol/mol, mean particle size 110+/-20 nm) were taken up by the human hepatoma line Hep G2 cells via endocytosis. Internalization of the cholesteryl oleate-POPC dispersions by Hep G2 cells was dependent on the incubation time and dispersion concentration. At the cholesteryl oleate concentration 100 microM, its total uptake and internalization were found to be 1.5 nmol and 0.8 nmol per 1 mg of cell protein/24 h, respectively. Intracellular cleavage of the cholesteryl oleate incorporated in dispersions resulted in accumulation of free cholesterol capable of being released into the medium and metabolized to water-soluble polar products, presumably bile acids; oleic acid released is, apparently, involved in biosynthesis of triacylglycerides. The low-density lipoprotein receptor is not involved in internalization of lipid dispersions, and the presence of the cholesteryl oleate-POPC dispersions has no effect on the receptor-dependent internalization of cholesteryl esters of the low-density lipoproteins. The obtained data allow us to consider nonspecific internalization of cholesteryl esters by hepatocytes as a substantial part of the nonpolar lipid clearance.  相似文献   

9.
Lipids noncovalently associated with cytoskeletal (CS) proteins of mouse mammary epithelial cells (MMEC) grown in primary culture were analyzed. A CS fraction, prepared by subjecting MMEC to 1.5 M KCl and 1% Triton X-100 in phosphate buffered saline (pH 7.4), was extracted 4-6 times with chloroform/methanol. Thin-layer chromatography (TLC) indicated that in comparison to whole cell lipid extracts, CS lipids consisted mostly of neutral lipids, especially triacylglycerols and, possibly cholesteryl esters. TLC analysis of chloroform/methanol CS extracts prepared from MMEC that had been incubated 4 h in [3H]palmitate revealed similar results, with the majority of label appearing in triacylglycerols and other neutral lipids. By autoradiography of sodium dodecyl sulfate polyacrylamide gels, all of the major CS proteins appeared labelled. The major regions of autoradiographic density of the gel were excised, the protein solubilized, and the lipids extracted and subjected to TLC. Most of the radiolabel appeared at the origin and ion front and resolved as neutral lipids. In contrast, keratins of 54-55 kDa and 46 kDa appeared to be associated noncovalently with a higher ratio of polar lipids (possibly phospholipids) to nonpolar (neutral lipids). Very little radioactivity, mostly neutral lipid, was associated with actin. A previously unidentified CS component of 30 kDa had primarily noncovalently bound neutral lipid. The results are discussed in terms of the apparent interactions of keratin filaments with the plasma membrane, nuclear envelope and cytoplasmic organelles.  相似文献   

10.
Hepatitis C virus (HCV) infected patients often develop steatosis and the HCV core protein alone can induce this phenomenon. To gain new insights into the pathways leading to steatosis, we performed lipidomic profiling of HCV core protein expressing-Huh-7 cells and also assessed the lipid profile of purified lipid droplets isolated from HCV 3a core expressing cells. Cholesteryl esters, ceramides and glycosylceramides, but not triglycerides, increased specifically in cells expressing the steatogenic HCV 3a core protein. Accordingly, inhibitors of cholesteryl ester biosynthesis such as statins and acyl-CoA cholesterol acyl transferase inhibitors prevented the increase of cholesteryl ester production and the formation of large lipid droplets in HCV core 3a-expressing cells. Furthermore, inhibition of de novo sphingolipid biosynthesis by myriocin - but not of glycosphingolipid biosynthesis by miglustat - affected both lipid droplet size and cholesteryl ester level. The lipid profile of purified lipid droplets, isolated from HCV 3a core-expressing cells, confirmed the particular increase of cholesteryl ester. Thus, both sphingolipid and cholesteryl ester biosynthesis are affected by the steatogenic core protein of HCV genotype 3a. These results may explain the peculiar lipid profile of HCV-infected patients with steatosis.  相似文献   

11.
Two major barriers that limit cationic lipids in gene delivery are low transfection efficiency and toxicity. In the present studies, we used dithiodiglycolic acid as a new tether for the polar and hydrophobic domains of a cationic lipid, cholesteryl hemidithiodiglycolyl tris(aminoethyl)amine (CHDTAEA). We compared the transfection activity and toxicity of CHDTAEA with its nondisulfide analogue and cholesteryl N-(dimethylaminoethyl) carbamate (DC-Chol). The liposomes of CHDTAEA had more than 2 orders of magnitude greater transfection activity than DC-Chol in CHO cells and 7 times greater transfection activity in SKnSH cells. CHDTAEA also demonstrated much less toxicity than the other two lipids. Dithiodiglycolic acid may act as an excellent linker in the application of cationic lipid syntheses.  相似文献   

12.
Two lipid transfer proteins, designated lipid transfer protein-I (Mr 69 000) and lipid transfer protein-II (Mr 55 000), each of which facilitates the transfer of radiolabelled cholesteryl ester, triacylglycerol and phosphatidylcholine between plasma lipoproteins, were purified from human plasma. Immunoglobulin G was prepared from goat antiserum to human lipid transfer protein-I (i.e., anti-human LTP-I IgG). The progressive addition of anti-human LTP-I IgG to buffered solutions containing either a highly purified mixture of human lipid transfer protein-I and lipid transfer protein-II, or highly purified rabbit lipid transfer protein (Abbey, M., Calvert, G.D. and Barter, P.J. (1984) Biochim. Biophys. Acta 793, 471-480) resulted in specific immunoprecipitation and the removal of increasing amounts, up to 100%, of cholesteryl ester, triacylglycerol and phosphatidylcholine transfer activities. However, similar precipitation studies on human and rabbit lipoprotein-free plasma resulted in the progressive removal of all cholesteryl ester and triacylglycerol transfer activities but only 30% (human) or 20% (rabbit) of phosphatidylcholine transfer activity. In all cases more anti-human LTP-I IgG was required to precipitate rabbit lipid transfer activity than human lipid transfer activity. These results suggest that lipid transfer protein-I and lipid transfer protein-II have antigenic sites in common, allowing precipitation of both proteins by specific antibody to lipid transfer protein-I. Most plasma phosphatidylcholine transfer activity is mediated by a protein (or proteins) other than lipid transfer protein-I and lipid transfer protein-II. In lipoprotein-free plasma all cholesteryl ester and triacylglycerol transfer activity, and some phosphatidylcholine transfer activity, is mediated by lipid transfer protein-I (or lipid transfer protein-I and an antigenically similar protein, lipid transfer protein-II.  相似文献   

13.
Structure of canine tracheobronchial mucin glycoprotein   总被引:4,自引:0,他引:4  
Canine tracheal mucin glycoprotein was isolated from beagle dogs fitted with tracheal pouches. Following exclusion chromatography on Sepharose CL-4B, noncovalently associated proteins were further resolved by dissociative density gradient centrifugation in CsBr-guanidinium chloride, and the mucin was then extracted with chloroform-methanol. The delipidated high-density product obtained had a nominal molecular weight of about 10(6) and an overall composition characteristic for a mucin glycoprotein, viz., a high content of serine and threonine, about 80% carbohydrate by weight, the absence of mannose or uronic acid, measurable ester sulfate, and a Pronase-resistant domain of molecular weight (1.75-3.0) X 10(5) which contains essentially all of the saccharide residues. Noncovalently bound lipid amounted to 6-10% by weight and was primarily cholesterol and cholesteryl esters. Cleavage of disulfide bonds by performic acid oxidation resulted in the release of a protein (Mr 65,000) not otherwise resolved by sodium dodecyl sulfate gel electrophoresis or the purification scheme.  相似文献   

14.
Toxic effects of oxidized lipid compounds contained in oxidized LDL to endothelial cells are involved in the pathogenesis of atherosclerosis. Glutathione (GSH) plays an important role in the redox status of the cell and in the protective effect against oxidant injuries. However, little is known about the respective effect of these different oxidized lipid compounds toward cytotoxicity and GSH status of the cell. In this report, we isolated by high-performance liquid chromatography oxidized lipid compounds from low-density lipoproteins (LDL) oxidized by copper and we examined their effects on cultured endothelial cells. Cytotoxicity and GSH status were determined after incubation of endothelial cells with crude LDL or isolated lipid fractions derived from cholesterol, phospholipids, or cholesteryl esters. Their effects on cell morphology were also assessed. Oxidized lipids coming from cholesteryl esters (hydroperoxides or short-chain polar derivatives) induced a slight but significant GSH depletion without inducing cytotoxicity. The same species coming from phospholipids induced a more pronounced GSH depletion and a cytotoxic effect which is only present for the more polar compounds (short-chain polar derivatives) and corresponding to a total GSH depletion. In contrast, fractions containing oxysterols had a larger cytotoxic effect than their effect on GSH depletion suggesting that their cytotoxic effects are mediated by a GSH-independent pathway. All together, these data suggest that LDL-associated oxidized lipids present in copper-oxidized LDL exert cytotoxicity by an additional or synergistic effect on GSH depletion, but also by another mechanism independent of the redox status of the cell.  相似文献   

15.
The accessibility of intracellular membrane cholesteryl esters to removal was tested with plasma lipid transfer protein as a tool. Incubation of a mixture of non-radioactive smooth microsomes + rough microsomes prelabeled with cholesteryl ester resulted in slight movement (2-4%) of radioactive cholesteryl ester into smooth microsomes. With the addition of increasing amounts of plasma lipid transfer protein to the mixture, the % transfer of cholesteryl ester into smooth microsomes progressively increased until a plateau was reached at 14%. Movement of cholesteryl ester in the reverse direction was examined with non-radioactive rough microsomes as an acceptor and smooth microsomes prelabeled with cholesteryl ester as a donor. The pattern of the % cholesteryl ester transferred in the reverse and forward direction was almost identical in the presence of plasma lipid transfer protein, showing bidirectional movement of cholesteryl ester between membranes.  相似文献   

16.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

17.
Lipids noncovalently associated with cytoskeletal (CS) proteins of mouse mammary epithelial cells (MMEC) grown in primary culture were analyzed. A CS fraction, preapred by subjecting MMEC to 1.5 KCl and 1% Triton X-100 in phosphate buffered saline (pH 7.4), was extracted 4–6 times with chloroform/methanol. Thin-layer chromatography (TLC) indicated that in comparison to whole cell lipid extracts, CS lipids consisted mostly of neutral lipids, especially triacylglycerols and, possibly cholesteryl esters. TLC analysis of chloroform/methanol CS extracts prepared from MMEC that had been incubated 4 h in [3H]palmitate revealed similar results, with the majority of label appearing in triacylglycerols and other neutral lipids. By autoradiography of sodium dodecyl sulfate polyacrylamide gels, all of the major CS proteins appeared labelled. The major regions of autoradiographic density of the gel were excised, the protein solubilized, and the lipids extracted and subjected to TLC. Most of the radiolabel appeared at the origin and ion front and resolved as neutral lipids. In contrast, keratins of 54–55 kDa and 46 kDa appeared to be associated noncovalently with a higher ratio of polar lipids (possibly phospholipids) to nonpolar (neutral lipids). Very little radioactivity, mostly neutral lipid, was associated with actin. A previously unidentified CS component of 30 kDa had primarily noncovalently bound neutral lipid. The results are discussed in terms of the apparent interactions of keratin filaments with the plasma membrane, nuclear envelope and cytoplasmic organelles.  相似文献   

18.
We studied cholesterol synthesis from [14C]acetate, cholesterol esterification from [14C]oleate, and cellular cholesterol and cholesteryl ester levels after incubating cells with apoE-free high density lipoproteins (HDL) or low density lipoproteins (LDL). LDL suppressed synthesis by up to 60%, stimulated esterification by up to 280%, and increased cell cholesteryl ester content about 4-fold. Esterification increased within 2 h, but synthesis was not suppressed until after 6 h. ApoE-free HDL suppressed esterification by about 50% within 2 h. Cholesterol synthesis was changed very little within 6 h, unless esterification was maximally suppressed; synthesis was then stimulated about 4-fold. HDL lowered cellular unesterified cholesterol by 13-20% within 2 h and promoted the removal of newly synthesized cholesterol and cholesteryl esters. These changes were transient; by 24 h, both esterification and cellular unesterified cholesterol returned to control levels, and cholesteryl esters increased 2-3-fold. HDL core lipid was taken up selectively from 125I-labeled [3H]cholesteryl ester- and ether-labeled HDL. LDL core lipid uptake was proportional to LDL apoprotein uptake. The findings suggest that 1) the cells respond initially to HDL or LDL with changes in esterification, and 2) HDL mediates both the removal of free cholesterol from the cell and the delivery of HDL cholesteryl esters to the cell.  相似文献   

19.
We describe herein the effects of Marek's disease herpesvirus (MDV) on cholesterol and cholesteryl ester metabolism in cultured chicken arterial smooth muscle cells. Infection of arterial smooth muscle cells from specific pathogen-free chickens with MDV, but not a virus control, herpesvirus of turkeys led to a 7-10-fold increase in the accumulation of free and esterified cholesterol and a 2-fold increase in phospholipids. The cellular lipid changes observed in the MDV-infected arterial smooth muscle cells resulted, in part, from the following: decreased low-density lipoprotein-cholesteryl ester hydrolysis due to decreased lysosomal (acid) cholesteryl ester hydrolytic activity; increased de novo synthesis of cholesterol; decreased excretion of free cholesterol; and, both increased cholesteryl ester synthetic activity and decreased cytoplasmic (neutral) cholesteryl ester hydrolytic activity which resulted in increased incorporation of oleic acid into cholesteryl ester. Other changes noted in the MDV-infected cells as compared to uninfected cells included a 2-fold increase in both total protein synthesis and lysosomal and microsomal marker enzyme activities. These alterations in lipid and protein metabolism in MDV-infected arterial smooth muscle cells may explain in part our in vivo findings that herpesvirus (MDV) infection of specific pathogen-free chickens fed a normocholesterolemic diet will induce arterial thickening and lipid accumulation resembling human atherosclerosis.  相似文献   

20.
Mucosal surfaces provide first-line defense against microbial invasion through their complex secretions. The antimicrobial activities of proteins in these secretions have been well delineated, but the contributions of lipids to mucosal defense have not been defined. We found that normal human nasal fluid contains all major lipid classes (in micrograms per milliliter), as well as lipoproteins and apolipoprotein A-I. The predominant less polar lipids were myristic, palmitic, palmitoleic, stearic, oleic, and linoleic acid, cholesterol, and cholesteryl palmitate, cholesteryl linoleate, and cholesteryl arachidonate. Normal human bronchioepithelial cell secretions exhibited a similar lipid composition. Removal of less-polar lipids significantly decreased the inherent antibacterial activity of nasal fluid against Pseudomonas aeruginosa, which was in part restored after replenishing the lipids. Furthermore, lipids extracted from nasal fluid exerted direct antibacterial activity in synergism with the antimicrobial human neutrophil peptide HNP-2 and liposomal formulations of cholesteryl linoleate and cholesteryl arachidonate were active against P. aeruginosa at physiological concentrations as found in nasal fluid and exerted inhibitory activity against other Gram-negative and Gram-positive bacteria. These data suggest that host-derived lipids contribute to mucosal defense. The emerging concept of host-derived antimicrobial lipids unveils novel roads to a better understanding of the immunology of infectious diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号