首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trait and density mediated indirect interactions in simple food webs   总被引:3,自引:0,他引:3  
This article compares indirect trait-mediated interactions in simple resource–consumer–predator food webs with those that are density-mediated. It focuses on two well documented responses of consumers to predation risk: decrease in consumer activity and habitat switch. These behavioral effects are transmitted to resources and they cause similar indirect effects as those which are mediated by density changes in consumers. Two indirect interactions are studied in this article: trophic cascades, and apparent competition. Results for density only, trait only and combined density and trait mediated interactions are compared and discussed with respect to manipulation with predator density (top-down manipulation) and resource environmental capacity (bottom-up manipulation). The article shows that trait-mediated effects on species equilibrial densities are similar to those of density-mediated, but they are often highly non-linear. Thus, they may have potential for even stronger impact on food webs than those which are density mediated.  相似文献   

2.
A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accomplished. I examined the effect of temperature and predator climate history in food webs composed of herbaceous plants, generalist grasshopper herbivores and spider predators across a natural 4.8°C temperature gradient spanning 500 km in northeastern USA. In these grasslands, the effects of rising temperatures on the plant community are indirect and arise via altered predator-herbivore interactions. Experimental warming had no direct effect on grasshoppers, but reduced predation risk effects by causing spiders from all study sites to seek thermal refuge lower in the plant canopy. However, spider thermal tolerance corresponded to spider origin such that spiders from warmer study sites tolerated higher temperatures than spiders from cooler study sites. As a consequence, the magnitude of the indirect effect of spiders on plants did not differ along the temperature gradient, although a reciprocal transplant experiment revealed significantly different effects of spider origin on the magnitude of top-down control. These results suggest that variation in predator response to warming may maintain species interactions and associated food web processes when faced with long term, chronic climate warming.  相似文献   

3.
Plant communities are shaped by bottom-up processes such as competition for nutrients and top-down processes such as herbivory. Although much theoretical work has studied how herbivores can mediate plant species coexistence, indirect effects caused by the carnivores that consume herbivores have been largely ignored. These carnivores can have significant indirect effects on plants by altering herbivore density (density-mediated effects) and behavior (trait-mediated effects). Carnivores that differ in traits, particularly in their hunting mode, cause different indirect effects on plants and, ultimately, different plant community compositions. We analyze a food-web model to determine how plant coexistence is affected by herbivore-consuming carnivores, contrasting those causing only density-mediated effects with those causing trait-mediated effects as well. In the latter case, herbivores can adjust their consumption of a refuge plant species. We derive a general graphical model to study the interplay of density- and trait-mediated effects. We show that carnivores eliciting both effects can sustain plant species coexistence, given intermediate intensities of behavioral adjustments. Coexistence is more likely, and more stable, if the refuge plant is competitively dominant. These results extend our understanding of carnivore indirect effects in food webs and show that behavioral effects can have major consequences on plant community structure, stressing the need for theoretical approaches that incorporate dynamical traits.  相似文献   

4.
Danner BJ  Joern A 《Oecologia》2003,137(3):352-359
In response to increased exposure to predators when searching for food, many prey increase the frequency of antipredator behaviors, potentially reducing foraging rate and food intake. Such direct, nonlethal interactions between predators and prey resulting in reduced food intake can indirectly influence lifecycle development through effects on growth, developmental rate, and survival. We investigated the general hypothesis that individual performance of a herbivorous insect can be negatively affected when exposed to nonlethal predation risk, and that the response can be mediated by food quality. This hypothesis was tested using the common rangeland grasshopper Ageneotettix deorum with and without exposure to common wolf spider predators (Lycosidae, Schizocosa spp.) on both untreated natural and fertilized vegetation. All spiders were rendered temporarily incapable of direct feeding by restricting function of the chelicerae with beeswax. Detectable responses by grasshoppers to spiders indicate indirect consequences for lifecycle development. Grasshopper performance was measured as hind femur growth, duration of nymphal lifecycle stages, and survivorship in a caged field experiment conducted over 2 years. Grasshoppers developed faster and grew 3–5% larger when allowed to forage on fertilized vegetation in the absence of risk from a spider predator. Failure-time analysis illustrated enhanced survival probability in response to elevated food quality and the negative effects of grasshopper susceptibility to nonlethal predation risk. Performance on food of relatively low, ambient quality with no predation risk equaled that of grasshoppers caged with high quality vegetation in the presence of a modified spider. Increased resource quality can clearly moderate the negative life history responses caused by the behavioral modification of grasshoppers when exposed to spider predation risk, a compensatory response.  相似文献   

5.
We know little about how temporally variable predation risk influences prey behavior. The risk allocation hypothesis predicts that prey facing more frequent risk should show weak anti-predator responses, and should be particularly active foragers during rare periods of safety, compared to prey facing infrequent risk. Several studies offer support for the risk allocation hypothesis, but how these responses might propagate through the larger ecological community remains largely unknown. We experimentally investigated the relative strength of trait- and density-mediated indirect effects of a predator on its prey’s resource across predation treatments that varied the lethality (caged or free-swimming predators) and temporal variability (always, often, or sometimes present) of predation. We performed this experiment in pond mesocosms using a giant water bug predator (Belostoma lutarium), an herbivorous pond snail (Physa gyrina), and algae as the basal resource. Snails greatly reduced the abundance of their algal resource when in the absence of predation. Lethal predation at low and medium intensities had significant positive indirect effects on the abundance of algae, mostly by reducing snail density. Snails responded behaviorally to high levels of deadly predation by foraging more and hiding less than in other situations, as predicted by the risk allocation hypothesis, and thus ameliorated the density-mediated indirect effects of predators on algae. Behavioral responses to caged predators, and the subsequent trait-mediated indirect effects, were negligible regardless of predation intensity. Our previous work has demonstrated that trait-mediated indirect effects are weak when resources are abundant, as they were in this experiment. This work demonstrates that temporal variation in predation intensity plays a key role in determining the relative strength of TMIIs and DMIIs in an aquatic food chain.  相似文献   

6.
Predators can affect the density and traits (e.g. morphology, behavior) of their prey, and either change may influence how prey interact with their resources. Thus, predators can interact indirectly with resource species (i.e. two trophic levels below) through two separate mechanisms. The relative strengths of these two kinds of indirect effects have rarely been compared directly, and how their relative importance varies across environmental gradients is virtually unknown. We investigated the relative strength of trait- and density-mediated indirect effects of the predatory insect Belostoma flumineum on algal communities through predation on the pond snail, Physa gyrina , across a gradient of basal resource abundance. Because prey balance the benefits of foraging against the increased risk of predation while foraging, the availability of the prey's resource should influence the strength of anti-predator behavioral responses and hence the strength of trait-mediated indirect interactions. Belostoma presence had positive indirect effects on resources as expected and total predator effects were constant across the basal resource gradient. At low initial resource levels, trait-mediated indirect effects on algal biomass exceeded density-mediated indirect effects, while at high initial resources the reverse was true. Snails showed similar habitat use across the resource gradient suggesting that the anti-predator response was most likely a depression of activity levels.  相似文献   

7.
This experimental study tests new theory for multiple predator effects on communities by using warming to alter predator habitat use and hence direct and indirect interactions in a grassland food web containing two dominant spider predator species, a dominant grasshopper herbivore and grass and herb plants. Experimental warming further offers insight into how climate change might alter direct and indirect effects. Under ambient environmental conditions, spiders used habitat in spatially complementary locations. Consistent with predictions, the multiple predator effect on grasshoppers and on plants was the average of the individual predator effects. Warming strengthened the single predator effects. It also caused the spider species to overlap lower in the vegetation canopy. Consistent with predictions, the system was transformed into an intraguild predation system with the consequent extinction of one spider species. The results portend climate caused loss of predator diversity with important consequences for food web structure and function.  相似文献   

8.
Parasites play pivotal roles in structuring communities, often via indirect interactions with non-host species. These effects can be density-mediated (through mortality) or trait-mediated (behavioural, physiological and developmental), and may be crucial to population interactions, including biological invasions. For instance, parasitism can alter intraguild predation (IGP) between native and invasive crustaceans, reversing invasion outcomes. Here, we use mathematical models to examine how parasite-induced trait changes influence the population dynamics of hosts that interact via IGP. We show that trait-mediated indirect interactions impart keystone effects, promoting or inhibiting host coexistence. Parasites can thus have strong ecological impacts, even if they have negligible virulence, underscoring the need to consider trait-mediated effects when predicting effects of parasites on community structure in general and biological invasions in particular.  相似文献   

9.
Numerous studies indicate that the behavioral responses of prey to the presence of predators can have an important role in structuring assemblages through trait-mediated indirect interactions. Few studies, however, have addressed how relative susceptibility to predation influences such interactions. Here we examine the effect of chemical cues from the common shore crab Carcinus maenas on the foraging behavior of two common intertidal gastropod molluscs. Of the two model consumers studied, Littorina littorea is morphologically more vulnerable to crab predation than Gibbula umbilicalis, and it exhibited greater competitive ability in the absence of predation threat. However, Littorina demonstrated a greater anti-predator response when experimentally exposed to predation cues, resulting in a lower level of foraging. This reversed the competitive interaction, allowing Gibbula substantially increased access to shared resources. Our results demonstrate that the susceptibility of consumers to predation can influence species interactions, and suggest that inter-specific differences in trait-mediated indirect interactions are another mechanism through which non-consumptive predator effects may influence trophic interactions.  相似文献   

10.
Recent ecological studies have postulated some indirect effects of predation, which are thought to arise by a variety of interactions propagating through the many vertical and horizontal links in food webs. Such theoretical explanations have been invoked by some empirical studies that demonstrated surprising or unexpected results in field experiments. Studies of intertidal and subtidal portions of temperate rocky reefs provide some of the best examples of such indirect effects of predation. Rarely, however, have the actual mechanisms involved been elucidated. To do this requires independent evidence of how processes that are only indirectly linked to predation are affected by a variety of predation regimes. This paper speculates on how factors such as competition, mutualism, desiccation, wave action and variation in recruitment on seashores might interact with predation, both during and subsequent to predatory events. I present evidence from experiments with predatory whelks in New South Wales, Australia, to emphasize the plausibility of these speculations. Predation on local seashores indirectly benefited algae by removing small grazers, providing bare space for larger grazers and living space for cryptic animals, and interacted synergistically with barnacle recruitment to increase turnover of the prey population. These studies indicate the value of elucidating experimentally the mechanisms by which indirect effects are proposed to occur. Only by demonstrating that the effects work as hypothesized can they be pronounced unambiguously as particular indirect effects. Without such evidence, other possibilities (either more simple or more complex) need to he investigated.  相似文献   

11.
Abstract.  1. Predation risk to insects is often size- or stage-selective and usually decreases as prey grow. Any factor, such as food quality, that accelerates developmental and growth rates is likely to reduce the period over which prey are susceptible to size-dependent predation.
2. Using field experiments, several hypotheses that assess growth, development, and egg production rates of the rangeland grasshopper Ageneotettix deorum (Scudder) were tested in response to combinations of food quality and predation risk from wolf spiders to investigate performance variation manifested through a behaviourally mediated path affecting food ingestion rates.
3. Grasshoppers with nutritionally superior food completed development ≈ 8–18% faster and grew 15–45% larger in the absence of spiders, in comparison with those subjected to low quality food exposed to spider predators. Growth and development did not differ for grasshoppers feeding on high quality food when predators were present in comparison with lower quality food unimpeded by predators. Responses indicated a compensatory relationship between resource quality and predation risk.
4. Surviving grasshoppers produced fewer eggs compared with individuals not exposed to spiders. Because no differences were found in daily egg production rate regardless of predation treatment, lower egg production was attributed to delayed age of first reproduction. Results compare favourably with responses observed in natural populations.
5. Risk of predation from spiders greatly reduced growth, development, and ultimately egg production. Increased food quality counteracts the impact of predation risk on grasshoppers through compensatory responses, suggesting that bottom-up factors mediate effects of spiders.  相似文献   

12.
With the increased use of biological control agents, artificial food webs are created in agricultural crops and the interactions between plants, herbivores and natural enemies change from simple tritrophic interactions to more complex food web interactions. Therefore, herbivore densities will not only be determined by direct predator–prey interactions and direct and indirect defence of plants against herbivores, but also by other direct and indirect interactions such as apparent competition, intraguild predation, resource competition, etc. Although these interactions have received considerable attention in theory and experiments, little is known about their impact on biological control. In this paper, we first present a review of indirect food web interactions in biological control systems. We propose to distinguish between numerical indirect interactions, which are interactions where one species affects densities of another species through an effect on the numbers of an intermediate species and functional indirect interactions, defined as changes in the way that two species interact through the presence of a third species. It is argued that functional indirect interactions are important in food webs and deserve more attention. Subsequently, we discuss experimental results on interactions in an artificial food web consisting of pests and natural enemies on greenhouse cucumber. The two pest species are the two-spotted spider mite Tetranychus urticae and the western flower thrips, Frankliniella occidentalis. Their natural enemies are the predatory mite Phytoseiulus persimilis, which is commonly used for spider mite control and the predatory mites Neoseiulus cucumeris and Iphiseius degenerans and the predatory bug Orius laevigatus, all natural enemies of thrips. First, we analyse the possible interactions between these seven species and we continue by discussing how functional indirect interactions, particularly the behaviour of arthropods, may change the significance and impact of direct interactions and numerical indirect interactions. It was found that a simple food web of only four species already gives rise to some quite complicated combinations of interactions. Spider mites and thrips interact indirectly through resource competition, but thrips larvae are intraguild predators of spider mites. Some of the natural enemies used for control of the two herbivore species are also intraguild predators. Moreover, spider mites produce a web that is subsequently used by thrips to hide from their predators. We discuss these and other results obtained so far and we conclude with a discussion of the potential impact of functional indirect and direct interactions on food webs and their significance for biological control.  相似文献   

13.
Recent reviews on trait-mediated interactions in food webs suggest that trait-mediated effects are as important in triggering top–down trophic cascades as are density-mediated effects. Trait-mediated interactions between predator and prey result from non-consumptive predator effects changing behavioural and/or life history traits of prey. However, in biological control the occurrence of trait-mediated interactions between predators, prey and plants has been largely ignored. Here, we show that non-consumptive predator effects on prey cascade down to the plant in an agro-ecological food chain. The study system consisted of the predatory mites P. persimilis and N. californicus , the herbivorous non-target prey western flower thrips F. occidentalis and the host plant bean. Irrespective of predator species and risk posed to prey, the presence of predator eggs led to increased ambulation, increased mortality and decreased oviposition of thrips. Furthermore, the presence of predator eggs reduced leaf damage caused by thrips. To our knowledge this is the first experimental evidence suggesting a positive trophic cascade triggered by non-consumptive predator effects on non-target prey in an augmentative biological control system.  相似文献   

14.
Predators can influence prey abundance and traits by direct consumption, as well as by non-consumptive effects of visual, olfactory, or tactile cues. The strength of these non-consumptive effects (NCEs) can be influenced by a variety of factors, including predator foraging mode, temporal variation in predator cues, and the density of competing prey. Testing the relative importance of these factors for determining NCEs is critical to our understanding of predator-prey interactions in a variety of settings. We addressed this knowledge gap by conducting two mesocosm experiments in a tri-trophic intertidal oyster reef food web. More specifically, we tested how a predatory fish (hardhead catfish, Ariopsis felis) directly influenced their prey (mud crabs, Panopeus spp.) and indirectly affected basal resources (juvenile oysters, Crassostrea virginica), as well as whether these direct and indirect effects changed across a density gradient of competing prey. Per capita crab foraging rates were inversely influenced by crab density, but they were not affected by water-borne predator cues. As a result, direct consumptive effects on prey foraging rates were stronger than non-consumptive effects. In contrast, predator cue and crab density interactively influenced indirect predator effects on oyster mortality in two experiments, with trait-mediated and density-mediated effects of similar magnitude operating to enhance oyster abundance. Consistent differences between a variable predator cue environment and other predator cue treatments (no cue and constant cue) suggests that an understanding of the natural risk environment experienced by prey is critical to testing and interpreting trait-mediated indirect interactions. Further, the prey response to the risk environment may be highly dependent on prey density, particularly in prey populations with strong intra-specific interactions.  相似文献   

15.
Because species interactions are often context‐dependent, abiotic factors such as temperature and biotic factors such as food quality may alter species interactions with potential consequences to ecosystem structure and function. For example, altered predator–prey interactions may influence the dynamics of trophic cascades, affecting net primary production. In a three‐year field experiment, we manipulated a plant–grasshopper–spider food chain in mesic tallgrass prairie to investigate the effects of temperature and food quality on grasshopper performance, and to understand the direct and indirect tritrophic interactions that contribute to trophic cascades. Because spiders are active at cooler temperatures than grasshoppers in our system, we hypothesized that predator effects would be strongest in cooled treatments, and weakest in warmed treatments. Grasshopper spider interactions were highly context‐dependent and varied significantly with food quality, temperature treatment and year. Spiders most often reduced grasshopper survival in the cooled and ambient temperature treatments, but had little to no effect on grasshopper survival in the warmed treatments, as hypothesized. In some years, plants compensated for grasshopper herbivory and trophic cascades were not observed despite significant effects of predators on grasshopper survival. However, in the year they were observed, trophic cascades only occurred in cooled treatments where predator effects on grasshoppers were strongest. Predicting ecosystem responses to climate change will require an understanding of how temperature influences species interactions. Our results demonstrate that changes in daily temperature regimes can alter predator–prey interactions among arthropods with consequences for ecosystem processes such as primary production and the relative importance of top–down and bottom–up processes.  相似文献   

16.
Mortality rates in insects, including grasshoppers (Acrididae), are often stage- or size-specific. We estimated stage-specific mortality rates for three common grasshopper species from a Nebraska (USA) sandhills grassland (Ageneotettix deorum, Melanoplus sanguinipes and Phoetaliotes nebrascensis), and partitioned the impact due to wandering spider predation from remaining sources. Survivorship was estimated for multiple developmental stages (3rd instar through adult) under experimental conditions that either prevented or permitted predation from free-living, wandering spiders (primarily Schizocosa species). Total stage-specific mortality, including spider predation, examined over the period of single stages was greatest for the youngest stages (91% for 3rd instar, 73% for 4th instar, 63.5% for 5th instar and 30.4% for adults). For the developmental stages considered and averaged for all species, the contribution to total mortality from spider predation over the 10-d period (approximately the length of a developmental stage) ranged from 17% for 3rd instar nymphs to 23% for 4th and 5th instars, and an undetectable level for adults. While spiders may depress grasshopper numbers, contributions from spider predation to grasshopper population dynamics are uncertain.  相似文献   

17.
Gunnar Rehfeldt 《Oecologia》1992,89(4):550-556
Summary Predation by orb-weaving spiders and crab spiders on the damselfly Calopteryx haemorrhoidalis was studied at a small stream in Southern France. One species of orb-weaving spider, Larinioides folium, caught 76% of the damselflies which fell prey to spiders. Displacement experiments on spiders on sections of bank and the positioning of webs in male territories show that the density and distribution of damselflies is not influenced by orbweb density or by the position of webs. Predation rates corresponded to orb-web density, but neither for sex nor for stage was there a relationship with damselfly density. Mean daily predation rates ranged between 0.9% for females and 4.1% for adult males. Predation risk to adult damselflies by orb-weaving spiders was male biased, whereas among tenerals there was no bias. Males were captured more frequently at territories near the water. Captures show a maximum at noon when territorial disputes of adult males were most frequent. After orbwebs were placed within territories predation rate of males was strongly increased. Predation risk to adult females in the direct vicinity of the stream was less than in the bank vegetation where they perch close to orbwebs. The risk of predation by crab spiders, which catch damselflies at their perching sites, was not sex-biased.  相似文献   

18.
Spiders are dominant terrestrial predators that consume a large variety of prey and engage in intraguild predation. Although the feeding habits of certain species are well known, the trophic structure of spider assemblages still needs to be investigated. Stable isotope analysis enables characterisation of trophic relationships between organisms because it tracks the energy flow in food webs and indicates the average number of trophic transfers between a given species and the base of the web, thus being a useful tool to estimate the magnitude of intraguild predation in food webs. Using this technique, we studied the trophic groups of spiders and their links within the arthropod food web of a Mediterranean organic citrus grove. We assessed the trophic positions of the 25 most common spider species relative to other arthropod predators and potential prey in the four seasons of the year, both in the canopy and on the ground. The analyses showed great seasonal variation in the isotopic signatures of some arthropod species, as well as the existence of various trophic groups and a wide range of trophic levels among spiders, even in species belonging to the same family. Differences in δ15N between spiders and the most abundant prey in the grove usually spanned two trophic levels or more. Our findings provide field evidence of widespread intraguild predation in the food web and caution against using spider families or guilds instead of individual species when studying spider trophic interactions.  相似文献   

19.
The role of predators in food webs extends beyond their ability to kill and consume prey. Such trait-mediated effects occur when signals of the predator influence the behaviour of other animals. Because all spiders are silk-producing carnivores, we hypothesized that silk alone would signal other arthropods and enhance non-lethal effects of spiders. We quantified the herbivory inflicted by two beetle species on green bean plants (Phaseolus vulgaris) in the presence of silkworm silk and spider silk along with no silk controls. Single leaflets were treated and enclosed with herbivores in the laboratory and field. Another set of leaflets were treated and left to experience natural herbivory in the field. Entire plants in the field were treated with silk and enclosed with herbivores or left exposed to herbivory. In all cases, the lowest levels of herbivory occurred with spider silk treatments and, in general, silkworm silk produced intermediate levels of leaf damage. These results suggest that silk may be a mechanism for the trait-mediated impacts of spiders and that it might contribute to integrated pest management programmes.  相似文献   

20.
Jennifer A. Lau 《Oikos》2013,122(3):474-480
As invasive species become integrated into existing communities, they engage in a wide variety of trophic interactions with other community members. Many of these interactions are direct (e.g. predator–prey interactions or interference competition), but invasive species also can affect native community members indirectly, by influencing the abundances of intermediary species in trophic webs. Observational studies suggest that invasive plant species affect herbivorous arthropod communities and that these effects may flow up trophic webs to influence the abundance of predators. However, few studies have experimentally manipulated the presence of invasive plants to quantify the effects of plant invasion on higher trophic levels. Here, I use comparisons across sites that have or have not been invaded by the invasive plant Medicago polymorpha, combined with experimental removals of Medicago and insect herbivores, to investigate how a plant invasion affects the abundance of predators. Both manipulative and observational experiments showed that Medicago increased the abundance of the exotic herbivore Hypera and predatory spiders, suggesting positive bottom–up effects of plant invasions on higher trophic levels. Path analyses conducted on data from natural habitats revealed that Medicago primarily increased spider abundance through herbivore‐mediated indirect pathways. Specifically, Medicago density was positively correlated with the abundance of the dominant herbivore Hypera, and increased Hypera densities were correlated with increased spider abundance. Smaller‐scale experimental studies confirmed that Medicago may increase spider abundance through herbivore‐mediated indirect pathways, but also showed that the effects of Medicago varied across sites, including having no effect or having direct effects on spider abundance. If effects of invasive species commonly flow through trophic webs, then invasive species have the potential to affect numerous species throughout the community, especially those species whose dynamics are tightly connected to highly‐impacted community members through trophic linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号