首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Enterococci are lactic acid bacteria of importance in food, public health and medical microbiology. Many strains produce bacteriocins, some of which have been well characterized. This review describes the structural and genetic characteristics of enterocins, the bacteriocins produced by enterococci. Some of these can be grouped with typical bacteriocins produced by lactic acid bacteria according to traditional classification, whereas others are atypical and structurally distinct from the general classes of bacteriocins. These atypical enterocins recently played an important role in and prompted reclassification of the class II bacteriocins into a new scheme. In this review, a more simplified classification scheme for enterocins based on amino acid sequence homologies is proposed. Enterocins are of interest for their diversity and potential for use as food biopreservatives. The emergence of multiple antibiotic-resistant enterococci among agents of nosocomial disease and the presence of virulence factors among food isolates requires a careful safety evaluation of isolates intended for potential biotechnical use. Nevertheless, enterococcal bacteriocins produced by heterologous hosts or added as cell-free preparations may still be attractive for application in food preservation.  相似文献   

2.
Bacteriocin-producing strains may be used as protective cultures to improve the microbial safety of foods. The crude or purified form of these antimicrobial agents may also be applied directly as food preservative. This review gives survey of the different bacteriocins produced byLactobacillus plantarum isolated from fermented food products with particular emphasis on their genetic and biochemical properties. A number of bacteriocins are produced byL. plantarum. These include plantaricin B, plantaricin BN, plantaricin A, plantaricin C, plantaricin S and T, plantaricin, F, plantaricin C19 and SA6 and other unnamed bacteriocins. However, with the exception of plantaricin A, information on the genetic and biochemical characteristics ofL. plantarum bacteriocins is still scant.  相似文献   

3.
Exploration of antimicrobial potential in LAB by genomics   总被引:8,自引:0,他引:8  
A tremendous flow of information has been created through various genome sequencing projects worldwide. So far, 128 bacterial genome sequences have been completed and 391 are under way. Many of these bacteria, including several lactic acid bacteria (LAB), are used in the production and preservation of food and feed. The major antimicrobial and biopreservative substance produced by LAB is organic acid; however, some LAB produce additional antimicrobial compounds. Among these, the bacteriocins have demonstrated great potential as food preservatives. Additionally, antimicrobial compounds different from the bacteriocins have recently been identified, of which several display strong antifungal activity. The information obtained from genomics and related technologies will have great impact on the future identification and development of new antimicrobial agents. Developments will include the identification of pathways for the production of antimicrobials and genome mining for new antimicrobial peptides.  相似文献   

4.
This commentary was aimed at shedding light on the multifunction of bacteriocins mainly those produced by lactic acid bacteria. These antibacterial agents were first used to improve food safety and quality. With the increasing antibiotic resistance concern worldwide, they have been considered as viable agents to replace or potentiate the fading abilities of conventional antibiotics to control human pathogens. Bacteriocins were also shown to have potential as antiviral agents, plant protection agents, and anticancer agents. Bacteriocins were reported to be involved in shaping bacterial communities through inter- and intra-specific interactions, conferring therefore to producing strains a probiotic added value. Furthermore, bacteriocins recently were shown as molecules with a fundamental impact on the resilience and virulence of some pathogens.  相似文献   

5.
细菌素的合成与作用机制   总被引:1,自引:0,他引:1  
细菌素是由细菌产生的抗菌蛋白,可以杀死与产生菌相近的细菌。很多乳酸菌产生不同多样性的细菌素,虽然这些细菌素都是由发酵或非发酵食品中发现的乳酸菌产生的,但是迄今只有乳酸链球菌素(Nisin)作为食品防腐剂被广泛应用。和抗生素不同的是,细菌素由核糖体合成,需经翻译后修饰活化并且通过特定转运系统输到胞外才能发挥其功能,它一般通过作用于靶细胞膜来抑制靶细胞的生长,同时本身合成细菌素的细胞对其产物具有免疫性。细菌素能安全有效地抑制病原体生长,在食品行业中具有广阔的应用前景。  相似文献   

6.
Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products.  相似文献   

7.
Over the last decades, much research has focused on lactic acid bacteria (LAB) bacteriocins because of their potential as biopreservatives and their action against the growth of spoilage microbes. Meat and fermented meat products are prone to microbial contamination, causing health risks, as well as economic losses in the meat industry. The use of bacteriocin-producing LAB starter or protective cultures is suitable for fermented meats. However, although bacteriocins can be produced during meat processing, their levels are usually much lower than those achieved during in vitro fermentations under optimal environmental conditions. Thus, the direct addition of a bacteriocin food additive would be desirable. Moreover, safety and technological characteristics of the bacteriocinogenic LAB must be considered before their widespread applications. This review describes the perspectives and challenges toward the complete disclosure of new bacteriocins as effective preservatives in the production of safe and “healthy” fermented meat products.  相似文献   

8.
Four novel heat-stable bacteriocin-like substances were found to be produced by Geobacillus stearothermophilus strains isolated from oil-wells in Lithuania. Geobacillus stearothermophilus 32A, 17, 30 and 31 strains were identified as producers of bacteriocins with bactericidal activity against closely related Geobacillus species and several pathogenic strains: Bacillus cereus DSM 12001 and Staphylococcus haemolyticus P903. The secretion of the analysed bacteriocins started during early logarithmic growth and dropped sharply after the culture entered the stationary phase of growth. The antimicrobial activity of the bacteriocins against sensitive indicator cells disappeared after treatment with proteolytic enzymes, indicating their proteinaceous nature. Bacteriocins were stable throughout the pH range between 4 and 10, and no loss in activity was noted following temperature exposures up to 100°C. Direct detection of antibacterial activity on SDS-PAGE suggests that the inhibitory peptides have a molecular weight of 6–7.5 kDa. Such bacteriocins with broad activity spectra, including antipathogenic action, are attractive to the biotechnology industry as they could be used as antimicrobial agents in medicine, agriculture and food products.  相似文献   

9.
The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.  相似文献   

10.
In nature, microorganisms can present several mechanisms for setting intercommunication and defense. One of these mechanisms is related to the production of bacteriocins, which are peptides with antimicrobial activity. Bacteriocins can be found in Gram-positive and Gram-negative bacteria. Nevertheless, bacteriocins produced by Gram-positive bacteria are of particular interest due to the industrial use of several strains that belong to this group, especially lactic acid bacteria (LAB), which have the status of generally recognized as safe (GRAS) microorganisms. In this work, we will review recent tendencies in the field of invention and state of art related to bacteriocin production by Gram-positive microorganism. Hundred-eight patents related to Gram-positive bacteriocin producers have been disclosed since 1965, from which 57% are related bacteriocins derived from Lactococcus, Lactobacillus, Streptococcus, and Pediococcus strains. Surprisingly, patents regarding heterologous bacteriocins production were mainly presented just in the last decade. Although the major application of bacteriocins is concerned to food industry to control spoilage and foodborne bacteria, during the last years bacteriocin applications have been displacing to the diagnosis and treatment of cancer, and plant disease resistance and growth promotion.  相似文献   

11.
The review is devoted to literature data on antimicrobial metabolites produced by lactic acid bacteria (LAB), which have long been used for the preparation of cultured dairy products. This paper summarizes data on low-molecular-weight antimicrobial substances, which are primary products or by-products of lactic fermentation. Individual sections are devoted to a variety of antifungal agents and bacteriocins produced by LAB; their potential use as food preservatives has been discussed. The characteristics and classification of bacteriocins are presented in a greater detail; their synthesis and mechanism of action are described using the example of nisin A, which belongs to class I lantibiotics synthesized by the bacterium Lactococcus lactis subsp. lactis. The mechanism of action of class II bacteriocins has been demonstrated with lacticin. Prospective directions for using LAB antimicrobial metabolites in industry and medicine are discussed in the Conclusion.  相似文献   

12.
Bacteriocins are antimicrobial peptides or proteins produced by strains of diverse bacterial species. The antimicrobial activity of this group of natural substances against foodborne pathogenic, as well as spoilage bacteria, has raised considerable interest for their application in food preservation. Application of bacteriocins may help reduce the use of chemical preservatives and/or the intensity of heat and other physical treatments, satisfying the demands of consumers for foods that are fresh tasting, ready to eat, and lightly preserved. In recent years, considerable effort has been made to develop food applications for many different bacteriocins and bacteriocinogenic strains. Depending on the raw materials, processing conditions, distribution, and consumption, the different types of foods offer a great variety of scenarios where food poisoning, pathogenic, or spoilage bacteria may proliferate. Therefore, the effectiveness of bacteriocins requires careful testing in the food systems for which they are intended to be applied against the selected target bacteria. This and other issues on application of bacteriocins in foods of dairy, meat, seafood, and vegetable origins are addressed in this review.  相似文献   

13.
Bacteriocins are antimicrobial peptides or proteins produced by strains of diverse bacterial species. The antimicrobial activity of this group of natural substances against foodborne pathogenic, as well as spoilage bacteria, has raised considerable interest for their application in food preservation. Application of bacteriocins may help reduce the use of chemical preservatives and/or the intensity of heat and other physical treatments, satisfying the demands of consumers for foods that are fresh tasting, ready to eat, and lightly preserved. In recent years, considerable effort has been made to develop food applications for many different bacteriocins and bacteriocinogenic strains. Depending on the raw materials, processing conditions, distribution, and consumption, the different types of foods offer a great variety of scenarios where food poisoning, pathogenic, or spoilage bacteria may proliferate. Therefore, the effectiveness of bacteriocins requires careful testing in the food systems for which they are intended to be applied against the selected target bacteria. This and other issues on application of bacteriocins in foods of dairy, meat, seafood, and vegetable origins are addressed in this review.  相似文献   

14.
A New Structure-based Classification of Gram-positive Bacteriocins   总被引:1,自引:0,他引:1  
Bacteriocins are ribosomally-synthesized peptides or proteins produced by a wide range of bacteria. The antimicrobial activity of this group of natural substances against foodborne pathogenic and spoilage bacteria has raised considerable interest for their application in food preservation. Classifying these bacteriocins in well defined classes according to their biochemical properties is a major step towards characterizing these anti-infective peptides and understanding their mode of action. Actually, the chosen criteria for bacteriocins’ classification lack consistency and coherence. So, various classification schemes of bacteriocins resulted various levels of contradiction and sorting inefficiencies leading to bacteriocins belonging to more than one class at the same time and to a general lack of classification of many bacteriocins. Establishing a coherent and adequate classification scheme for these bacteriocins is sought after by several researchers in the field. It is not straightforward to formulate an efficient classification scheme that encompasses all of the existing bacteriocins. In the light of the structural data, here we revisit the previously proposed contradictory classification and we define new structure-based sequence fingerprints that support a subdivision of the bacteriocins into 12 groups. The paper lays down a resourceful and consistent classification approach that resulted in classifying more than 70% of bacteriocins known to date and with potential to identify distinct classes for the remaining unclassified bacteriocins. Identified groups are characterized by the presence of highly conserved short amino acid motifs. Furthermore, unclassified bacteriocins are expected to form an identified group when there will be sufficient sequences.  相似文献   

15.
AIMS: The antimicrobial activity of two plasmid-borne bacteriocins produced by Enterococcus casseliflavus IM 416K1 and Ent. faecalis IM 388C and their mating transferability were studied. METHODS AND RESULTS: Both bacteriocins showed antibacterial activity against taxonomically related micro-organisms and Listeria monocytogenes but differ for heat sensitivity, antimicrobial titre, molecular size and class of affiliation. The transferability by mating of the antibacterial properties from producers to Enterococcus faecalis JH2-2 revealed that the bacteriocin-phenotype was linked in both strains to genes located on a 34 MDa plasmid. This result was confirmed by loss of antibacterial activity and immunity after curing treatment. CONCLUSIONS: Restriction analysis has shown a different profile of the two conjugative plasmids. Enterocin 416K1 and Enterocin 388C could represent natural antilisterial agents to use in food technology. SIGNIFICANCE AND IMPACT OF THE STUDY: The transferability of the 34 MDa conjugative plasmids might be considered a possibility for the study of bacteriocins expression in bacterial hosts different from the native strains.  相似文献   

16.
Bacteriocins: developing innate immunity for food   总被引:14,自引:0,他引:14  
Bacteriocins are bacterially produced antimicrobial peptides with narrow or broad host ranges. Many bacteriocins are produced by food-grade lactic acid bacteria, a phenomenon which offers food scientists the possibility of directing or preventing the development of specific bacterial species in food. This can be particularly useful in preservation or food safety applications, but also has implications for the development of desirable flora in fermented food. In this sense, bacteriocins can be used to confer a rudimentary form of innate immunity to foodstuffs, helping processors extend their control over the food flora long after manufacture.  相似文献   

17.
Enterococcus mundtii CUGF08, a lactic acid bacterium isolated from alfalfa sprouts, was found to produce mundticin L, a new class IIa bacteriocin that has a high level of inhibitory activity against the genus Listeria. The plasmid-associated operons containing genes for the mundticin L precursor, the ATP binding cassette (ABC) transporter, and immunity were cloned and sequenced. The fifth residue of the conservative consensus sequence YGNGX in the mature bacteriocin is leucine instead of valine in the sequences of the homologous molecules mundticin KS (ATO6) and enterocin CRL35. The primary structures of the ABC transporter and the immunity protein are homologous but unique.Bacteriocins are ribosomally synthesized proteinaceous compounds that inhibit closely related bacteria (19). Due to consumer concerns with chemical and irradiation preservation methods and due to the rising demand for minimally processed food products, alternative methods for shelf life extension and enhanced safety are needed. Bacteriocins are considered “natural” antimicrobials since many bacteriocins are produced by food grade lactic acid bacteria, which are generally recognized as safe. Bacteriocins can be divided into three main classes: the class I lanthionine-containing lantibiotics, exemplified by nisin; the class II non-lanthionine-containing bacteriocins; and the class III heat-labile, large proteins (6). Class III bacteriocins have limited application due to their thermal instability and cytolytic activity against eukaryotic cells. Class II can be further divided into class IIa containing pediocin-like bacteriocins, class IIb containing two-peptide bacteriocins, and class IIc containing other bacteriocins (8). Class IIa bacteriocins have been extensively studied since pediocin PA-1 was first discovered (12) and characterized (20). Currently, only nisin in class I has been approved by the FDA as a natural food additive. Bacteriocins belonging to class IIa are promising alternative antimicrobials since they are more stable over a broader range of heating regimens and pH conditions. In addition, these bacteriocins exhibit stronger antimicrobial activity against the genus Listeria than nisin (17) but have a narrower antimicrobial spectrum.The potential applications of class IIa bacteriocins in both meat and plant-based foods as a means to provide protection against potential food-borne pathogens and extend shelf life continue to expand. In an attempt to use biological methods for controlling food-borne pathogens on fresh sprouts, a number of food grade lactic acid bacteria were isolated from the indigenous microbiota on alfalfa sprouts. Some of these isolates were found to be bacteriocinogenic. This study describes a new class IIa bacteriocin, mundticin L produced by Enterococcus mundtii CUGF08 isolated from alfalfa sprouts.  相似文献   

18.
The pharmacodynamics of antibiotics and many other chemotherapeutic agents is often governed by a 'multi-hit' kinetics, which requires the binding of several molecules of the therapeutic agent for the killing of their targets. In contrast, the pharmacodynamics of novel alternative therapeutic agents, such as phages and bacteriocins against bacterial infections or viruses engineered to target tumour cells, is governed by a 'single-hit' kinetics according to which the agent will kill once it is bound to its target. In addition to requiring only a single molecule for killing, these agents bind irreversibly to their targets. Here, we explore the pharmacodynamics of such 'irreversible, single-hit inhibitors' using mathematical models. We focus on agents that do not replicate, i.e. in the case of phage therapy, we deal only with non-lytic phages and in the case of cancer treatment, we restrict our analysis to replication of incompetent viruses. We study the impact of adsorption on dead cells, heterogeneity in adsorption rates and spatial compartmentalization.  相似文献   

19.
Applications of the bacteriocin,nisin   总被引:36,自引:0,他引:36  
Nisin was first introduced commercially as a food preservative in the UK approximately 30 years ago. First established use was as a preservative in processed cheese products and since then numerous other applications in foods and beverages have been identified. It is currently recognised as a safe food preservative in approximately 50 countries. The established uses of nisin as a preservative in processed cheese, various pasteurised dairy products, and canned vegetables will be briefly reviewed. More recent applications of nisin include its use as a preservative in high moisture, hot baked flour products (crumpets) and pasteurised liquid egg. Renewed interest is evident in the use of nisin in natural cheese production. Considerable research has been carried out on the antilisterial properties of nisin in foods and a number of applications have been proposed. Uses of nisin to control spoilage lactic acid bacteria have been identified in beer, wine, alcohol production and low pH foods such as salad dressings. Further developments of nisin are likely to include synergistic action of nisin with chelators and other bacteriocins, and its use as an adjunct in novel food processing technology such as higher pressure sterilisation and electroporation. Production of highly purified nisin preparations and enhancement by chelators has led to interest in the use of nisin for human ulcer therapy, and mastitis control in cattle.  相似文献   

20.
Bacteriocins from lactic acid bacteria (LAB) are a diverse group of antimicrobial proteins/peptides, offering potential as biopreservatives, and exhibit a broad spectrum of antimicrobial activity at low concentrations along with thermal as well as pH stability in foods. High bacteriocin production usually occurs in complex media. However, such media are expensive for an economical production process. For effective use of bacteriocins as food biopreservatives, there is a need to have heat-stable wide spectrum bacteriocins produced with high-specific activity in food-grade medium. The main hurdles concerning the application of bacteriocins as food biopreservatives is their low yield in food-grade medium and time-consuming, expensive purification processes, which are suitable at laboratory scale but not at industrial scale. So, the present review focuses on the bacteriocins production using complex and food-grade media, which mainly emphasizes on the bacteriocin producer strains, media used, different production systems used and effect of different fermentation conditions on the bacteriocin production. In addition, this review emphasizes the purification processes designed for efficient recovery of bacteriocins at small and large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号