首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An essential aspect of normal brain function is the bidirectional interaction and communication between neurons and neighbouring glial cells. To this end, the brain has evolved ligand–receptor partnerships that facilitate crosstalk between different cell types. The chemokine, fractalkine (FKN), is expressed on neuronal cells, and its receptor, CX3CR1, is predominantly expressed on microglia. This review focuses on several important functional roles for FKN/CX3CR1 in both health and disease of the central nervous system. It has been posited that FKN is involved in microglial infiltration of the brain during development. Microglia, in turn, are implicated in the developmental synaptic pruning that occurs during brain maturation. The abundance of FKN on mature hippocampal neurons suggests a homeostatic non-inflammatory role in mechanisms of learning and memory. There is substantial evidence describing a role for FKN in hippocampal synaptic plasticity. FKN, on the one hand, appears to prevent excess microglial activation in the absence of injury while promoting activation of microglia and astrocytes during inflammatory episodes. Thus, FKN appears to be neuroprotective in some settings, whereas it contributes to neuronal damage in others. Many progressive neuroinflammatory disorders that are associated with increased microglial activation, such as Alzheimer''s disease, show disruption of the FKN/CX3CR1 communication system. Thus, targeting CX3CR1 receptor hyperactivation with specific antagonists in such neuroinflammatory conditions may eventually lead to novel neurotherapeutics.  相似文献   

2.
Molecular imaging of the 18 kD Translocator protein (TSPO) with positron emission tomography (PET) is of great value for studying neuroinflammation in rodents longitudinally. Quantification of the TSPO in rodents is, however, quite challenging. There is no suitable reference region and the use of plasma-derived input is not an option for longitudinal studies. The aim of this study was therefore to evaluate the use of the standardized uptake value (SUV) as an outcome measure for TSPO imaging in rodent brain PET studies, using [11C]PBR28. In the first part of the study, healthy male Wistar rats (n = 4) were used to determine the correlation between the distribution volume (VT, calculated with Logan graphical analysis) and the SUV. In the second part, healthy male Wistar rats (n = 4) and healthy male C57BL/6J mice (n = 4), were used to determine the test-retest variability of the SUV, with a 7-day interval between measurements. Dynamic PET scans of 63 minutes were acquired with a nanoScan PET/MRI and nanoScan PET/CT. An MRI scan was made for anatomical reference with each measurement. The whole brain VT of [11C]PBR28 in rats was 42.9 ± 1.7. A statistically significant correlation (r2 = 0.96; p < 0.01) was found between the VT and the SUV. The test-retest variability in 8 brain region ranged from 8 to 20% in rats and from 7 to 23% in mice. The interclass correlation coefficient (ICC) was acceptable to excellent for rats, but poor to acceptable for mice. In conclusion: The SUV of [11C]PBR28 showed a high correlation with VT as well as good test-retest variability. For future longitudinal small animal PET studies the SUV can thus be used to describe [11C]PBR28 uptake in healthy brain tissue. Based on the present observations, further studies are needed to explore the applicability of this approach in small animal disease models, with special regard to neuroinflammatory models.  相似文献   

3.
Translocator protein 18 kDa (TSPO) is a mitochondrial outer membrane protein and is abundantly expressed in a variety of organ and tissues. To date, the functional role of TSPO on vascular endothelial cell activation has yet to be fully elucidated. In the present study, the phorbol 12-myristate 13-acetate (PMA, 250 nM), an activator of protein kinase C (PKC), was used to induce vascular endothelial activation. Adenoviral TSPO overexpression (10–100 MOI) inhibited PMA-induced vascular cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1) expression in a dose dependent manner. PMA-induced VCAM-1 expressions were inhibited by Mito-TEMPO (0.1–0.5 μM), a specific mitochondrial antioxidants, and cyclosporin A (1–5 μM), a mitochondrial permeability transition pore inhibitor, implying on an important role of mitochondrial reactive oxygen species (ROS) on the endothelial activation. Moreover, adenoviral TSPO overexpression inhibited mitochondrial ROS production and manganese superoxide dismutase expression. On contrasts, gene silencing of TSPO with siRNA increased PMA-induced VCAM-1 expression and mitochondrial ROS production. Midazolam (1–50 μM), TSPO ligands, inhibited PMA-induced VCAM-1 and mitochondrial ROS production in endothelial cells. These results suggest that mitochondrial TSPO can inhibit PMA-induced endothelial inflammation via suppression of VCAM-1 and mitochondrial ROS production in endothelial cells.  相似文献   

4.
The mitochondrial 18 kDa Translocator Protein (TSPO) was first detected by its capability to bind benzodiazepines in peripheral tissues and later also in glial cells in the brain, hence its previous most common name peripheral benzodiazepine receptor (PBR). TSPO has been implicated in various functions, including apoptosis and steroidogenesis, among others. Various endogenous TSPO ligands have been proposed, for example: Diazepam Binding Inhibitor (DBI), triakontatetraneuropeptide (TTN), phospholipase A2 (PLA2), and protoporphyrin IX. However, the functional implications of interactions between the TSPO and its putative endogenous ligands still have to be firmly established. The TSPO has been suggested to interact with a mitochondrial protein complex, summarized as mitochondrial membrane permeability transition pore (MPTP), which is considered to regulate the mitochondrial membrane potential (ΔΨm). In addition, the TSPO is associated with several other proteins. The associations of the TSPO with these various proteins at the mitochondrial membranes have been attributed to functions such as apoptosis, steroidogenesis, phosphorylation, reactive oxygen species (ROS) generation, ATP production, and collapse of the ΔΨm. Interestingly, while TSPO is known to play a role in the modulation of steroid production, in turn, steroids are also known to affect TSPO expression. As with the putative endogenous TSPO ligands, the effects of steroids on TSPO functions still have to be established. In any case, steroid-TSPO interactions occur in organs and tissues as diverse as the reproductive system, kidney, and brain. In general, the steroid-TSPO interactions are thought to be part of stress responses, but may also be essential for reproductive events, embryonic development, and responses to injury, including brain injury. The present review focuses on the role of TSPO in cell death i.e. the notion that enhanced expression and/or activation of the TSPO leads to cell death, and the potential of steroids to regulate TSPO expression and activation.  相似文献   

5.
Interleukin-34 (IL-34) is a newly discovered cytokine as an additional ligand for colony stimulating factor-1 receptor (CSF1R), and its functions are expected to overlap with colony stimulating factor-1/macrophage-colony stimulating factor. We have previously shown that the IL-34 is primarily produced by neurons in the central nervous system (CNS) and induces proliferation and neuroprotective properties of microglia which express CSF1R. However, the functions of IL-34 in the CNS are still elucidative. Here we show that CNS capillary endothelial cells also express CSF1R. IL-34 protected blood–brain barrier integrity by restored expression levels of tight junction proteins, which were downregulated by pro-inflammatory cytokines. The novel function of IL-34 on the blood–brain barrier may give us a clue for new therapeutic strategies in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis and Alzheimer''s disease.  相似文献   

6.
Amyloid accumulation in the brain of Alzheimer’s patients results from altered processing of the 39- to 43-amino acid amyloid β protein (Aβ). The mechanisms for the elevated amyloid (Aβ1–42) are considered to be over-expression of the amyloid precursor protein (APP), enhanced cleavage of APP to Aβ, and decreased clearance of Aβ from the central nervous system (CNS). We report herein studies of Aβ stimulated effects on endothelial cells. We observe an interesting and as yet unprecedented feedback effect involving Aβ1–42 fibril-induced synthesis of APP by Western blot analysis in the endothelial cell line Hep-1. We further observe an increase in the expression of Aβ1–40 by flow cytometry and fluorescence microscopy. This phenomenon is reproducible for cultures grown both in the presence and absence of serum. In the former case, flow cytometry reveals that Aβ1–40 accumulation is less pronounced than under serum-free conditions. Immunofluorescence staining further corroborates these observations. Cellular responses to fibrillar Aβ1–42 treatment involving eNOS upregulation and increased autophagy are also reported.  相似文献   

7.

The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.

  相似文献   

8.
Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory–vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory–vocal mirror neurons in a sensorimotor region of the songbird''s brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory–vocal mirroring in the songbird''s brain.  相似文献   

9.
The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10−5 M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.  相似文献   

10.
Gamma-band activity, peaking around 30–100 Hz in the local field potential''s power spectrum, has been found and intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies showed that gamma rhythms are stochastic in time and vary with visual stimuli. Recent studies further showed that multiple rhythms coexist in V1 with distinct origins in different species. While all these experimental facts are a challenge for understanding the functions of gamma in the visual cortex, there are many signs of progress in computational studies. This review summarizes and discusses studies on gamma in the visual cortex from multiple perspectives and concludes that gamma rhythms are still a mystery. Combining experimental and computational studies seems the best way forward in the future.  相似文献   

11.
Translocator protein (TSPO), formerly known as peripheral-type benzodiazepine receptor (PBR), has been described in several tissues and characterized as one of the main elements of steroidogenesis. However, TSPO is also involved in other pathways and cell functions, such as apoptosis regulation, protein import, membrane biogenesis, cell cycle regulation, oxygen homeostasis and mitochondrial membrane fluidity regulation. In the kidney, TSPO is normally located in the distal parts of the nephron from the thick ascending limb of the loop of Henle to the medullary collecting ducts. However when the kidney is submitted to a stress such as ischemia reperfusion injury there is a defined change in TSPO expression towards more proximal areas of the nephron, and the protein can be detected as high as proximal tubular cells and the Bowman Capsule. As the injury persists, TSPO is also located in invading mononucleated cells, in a pattern reproducing invasion by CD4+ helper T cells, and in the damaged vessels where TSPO is expressed both in endothelial and smooth muscle cells. Herein we review the potential use of TSPO-directed treatment for ischemia reperfusion injury, particularly regarding pre-conditioning of the organ. We also detail the relationship of proximal TSPO staining with the intensity of the injury, particularly the implication of monomeric (18 kDa) TSPO and its role in hypoxia-reoxygenation and apoptosis prevention. The potential implications of the protein with regeneration processes activated in response to injury and their relation with embryogenesis pathways are discussed.  相似文献   

12.
Developmental signalling pathways such as Wnt/β-catenin, Notch and Sonic hedgehog play a central role in nearly all the stages of neuronal development. The term ‘embryonic’ might appear to be a misnomer to several people because these pathways are functional during the early stages of embryonic development and adulthood, albeit to a certain degree. Therefore, any aberration in these pathways or their associated components may contribute towards a detrimental outcome in the form of neurological disorders such as Alzheimer''s disease, Parkinson''s disease, amyotrophic lateral sclerosis and stroke. In the last decade, researchers have extensively studied these pathways to decipher disease-related interactions, which can be used as therapeutic targets to improve outcomes in patients with neurological abnormalities. However, a lot remains to be understood in this domain. Nevertheless, there is strong evidence supporting the fact that embryonic signalling is indeed a crucial mechanism as is manifested by its role in driving memory loss, motor impairments and many other processes after brain trauma. In this review, we explore the key roles of three embryonic pathways in modulating a range of homeostatic processes such as maintaining blood–brain barrier integrity, mitochondrial dynamics and neuroinflammation. In addition, we extensively investigated the effect of these pathways in driving the pathophysiology of a range of disorders such as Alzheimer''s, Parkinson''s and diabetic neuropathy. The concluding section of the review is dedicated to neurotherapeutics, wherein we identify and list a range of biological molecules and compounds that have shown enormous potential in improving prognosis in patients with these disorders.  相似文献   

13.
The translocator protein (TSPO) is a five transmembrane domain protein localised primarily in the outer mitochondrial membrane of steroid-synthesizing tissues, including the brain. The TSPO mediates the rate-limiting step of steroidogenesis, consisting of the translocation of the substrate cholesterol from the outer to the inner mitochondrial membrane. In the recent years TSPO function has received attention in several psychiatric disorders since these diseases have been associated with unbalanced steroid levels. Accordingly, an alteration in the levels of TSPO has been found in various psychiatric disorders, including social phobia, post-traumatic stress disorder, adult separation anxiety and schizophrenia. The discovery that TSPO drug ligands are able to stimulate neurosteroid production in the brain, independently of peripheral endocrine sources, and restore neurosteroid-mediated neurotransmission, has made the TSPO an attractive drug target for treating a number of psychiatric disorders. In anxiety TSPO drug ligands have shown in vivo efficacy in pharmacologically induced anxiety models in both animals and humans. The focus of this review is to illustrate the currently available literature regarding the role of TSPO in psychiatric disorders.  相似文献   

14.
Function of the mammalian translocator protein (TSPO; previously known as the peripheral benzodiazepine receptor) remains unclear because its presumed role in steroidogenesis and mitochondrial permeability transition established using pharmacological methods has been refuted in recent genetic studies. Protoporphyrin IX (PPIX) is considered a conserved endogenous ligand for TSPO. In bacteria, TSPO was identified to regulate tetrapyrrole metabolism and chemical catalysis of PPIX in the presence of light, and in vertebrates, TSPO function has been linked to porphyrin transport and heme biosynthesis. Positive correlation between high TSPO expression in cancer cells and susceptibility to photodynamic therapy based on their increased ability to convert the precursor 5-aminolevulinic acid (ALA) to PPIX appeared to reinforce this mechanism. In this study, we used TSPO knock-out (Tspo−/−) mice, primary cells, and different tumor cell lines to examine the role of TSPO in erythropoiesis, heme levels, PPIX biosynthesis, phototoxic cell death, and mitochondrial bioenergetic homeostasis. In contrast to expectations, our results demonstrate that TSPO deficiency does not adversely affect erythropoiesis, heme biosynthesis, bioconversion of ALA to PPIX, and porphyrin-mediated phototoxic cell death. TSPO expression levels in cancer cells do not correlate with their ability to convert ALA to PPIX. In fibroblasts, we observed that TSPO deficiency decreased the oxygen consumption rate and mitochondrial membrane potential (ΔΨm) indicative of a cellular metabolic shift, without a negative impact on porphyrin biosynthetic capability. Based on these findings, we conclude that mammalian TSPO does not have a critical physiological function related to PPIX and heme biosynthesis.  相似文献   

15.
Exposure to air pollutants, including particulate matter, results in activation of the brain inflammatory response and Alzheimer disease (AD)-like pathology in dogs and humans. However, the length of time required for inhalation of ambient particulate matter to influence brain inflammation and AD pathology is less clear. Here, we studied the effect of 3 and 9 months of air particulate matter (<2.5 μm diameter, PM2.5) exposure on brain inflammatory phenotype and pathological hallmarks of AD in C57BL/6 mice. Using western blot, ELISA, and cytokine array analysis we quantified brain APP, beta-site APP cleaving enzyme (BACE), oligomeric protein, total Aβ 1–40 and Aβ 1–42 levels, inducible nitric oxide synthase (iNOS), nitrotyrosine-modified proteins, HNE-Michael adducts, vascular cell adhesion molecule 1 (VCAM-1), glial markers (GFAP, Iba-1), pre- and post- synaptic markers (synaptophysin and PSD-95), cyclooxygenase (COX-1, COX-2) levels, and the cytokine profile in PM2.5 exposed and filtered air control mice. Only 9 month PM2.5 exposure increased BACE protein levels, APP processing, and Aβ 1–40 levels. This correlated with a concomitant increase in COX-1 and COX-2 protein levels and a modest alteration in the cytokine profile. These data support the hypothesis that prolonged exposure to airborne particulate matter has the potential to alter brain inflammatory phenotype and promote development of early AD-like pathology.  相似文献   

16.

Background

This study explores the magnetostatic properties of the Alzheimer''s disease brain using a recently proposed, magnetic resonance imaging, postprocessed contrast mechanism. Quantitative susceptibility mapping (QSM) has the potential to monitor in vivo iron levels by reconstructing magnetic susceptibility sources from field perturbations. However, with phase data acquired at a single head orientation, the technique relies on several theoretical approximations and requires fast-evolving regularisation strategies.

Methods

In this context, the present study describes a complete methodological framework for magnetic susceptibility measurements with a review of its theoretical foundations.

Findings and Significance

The regional and whole-brain cross-sectional comparisons between Alzheimer''s disease subjects and matched controls indicate that there may be significant magnetic susceptibility differences for deep brain nuclei – particularly the putamen – as well as for posterior grey and white matter regions. The methodology and findings described suggest that the QSM method is ready for larger-scale clinical studies.  相似文献   

17.
Despite of various PET radioligands targeting the translocator protein TSPO 18-KDa are used for the investigations of neuroinflammatory conditions associated with neurological disorders, development of new TSPO radiotracers is still an active area of the researches with a major focus on the 18F-labelled radiotracers. Here, we report the radiochemical synthesis of [18F]vinpocetine, fluorinated analogue of previously reported TSPO radioligand, [11C]vinpocetine. Radiolabeling was achieved by [18F]fluoroethylation of apovincaminic acid with [18F]fluoroethyl bromide. [18F]vinpocetine was obtained in quantities >2.7 GBq in RCY of 13% (non–decay corrected), and molar activity >60 GBq/µmol within 95 min synthesis time. Preliminary PET studies in a cynomolgus monkey and metabolite studies by HPLC demonstrated similar results by [18F]vinpocetine as for [11C]vinpocetine, including high blood-brain barrier permeability, regional uptake pattern and fast washout from the NHP brain. These results demonstrate that [18F]fluorovinpocetine warrants further evaluation as an easier accessible alternative to [11C]vinpocetine.  相似文献   

18.
High‐protein feeding acutely lowers postprandial glucose concentration compared to low‐protein feeding, despite a dichotomous rise of circulating glucagon levels. The physiological role of this glucagon rise has been largely overlooked. We here first report that glucagon signalling in the dorsal vagal complex (DVC) of the brain is sufficient to lower glucose production by activating a Gcgr–PKAERK–KATP channel signalling cascade in the DVC of rats in vivo. We further demonstrate that direct blockade of DVC Gcgr signalling negates the acute ability of high‐ vs. low‐protein feeding to reduce plasma glucose concentration, indicating that the elevated circulating glucagon during high‐protein feeding acts in the brain to lower plasma glucose levels. These data revise the physiological role of glucagon and argue that brain glucagon signalling contributes to glucose homeostasis during dietary protein intake.  相似文献   

19.
Alzheimer''s disease (AD) is the most common cause of dementia among older people. At present, there is no cure for the disease and as of now there are no early diagnostic tests for AD. There is an urgency to develop a novel promising biomarker for early diagnosis of AD. Using surface-enhanced laser desorption ionization-mass spectrometry SELDI-(MS) proteomic technology, we identified and purified a novel 11.7-kDa metal- binding protein biomarker whose content is increased in the cerebrospinal fluid (CSF) and in the brain of AD dementia subjects as a function of clinical dementia. Following purification and protein-sequence analysis, we identified and classified this biomarker as S100A7, a protein known to be involved in immune responses. Using an adenoviral-S100A7 expression system, we continued to examine the potential role of S100A7 in AD amyloid neuropathology in in vitro model of AD. We found that the expression of exogenous S100A7 in primary cortico-hippocampal neuron cultures derived from Tg2576 transgenic embryos inhibits the generation of β-amyloid (Aβ)1–42 and Aβ1–40 peptides, coincidental with a selective promotion of “non- amyloidogenic” α-secretase activity via promotion of ADAM (a disintegrin and metalloproteinase)-10. Finally, a selective expression of human S100A7 in the brain of transgenic mice results in significant promotion of α-secretase activity. Our study for the first time suggests that S100A7 may be a novel biomarker of AD dementia and supports the hypothesis that promotion of S100A7 expression in the brain may selectively promote α-secretase activity in the brain of AD precluding the generation of amyloidogenic peptides. If in the future we find that S1000A7 protein content in CSF is sensitive to drug intervention experimentally and eventually in the clinical setting, S100A7 might be developed as novel surrogate index (biomarker) of therapeutic efficacy in the characterization of novel drug agents for the treatment of AD.  相似文献   

20.
Vinculin helps cells regulate and respond to mechanical forces. It is a scaffolding protein that tightly regulates its interactions with potential binding partners within adhesive structures—including focal adhesions that link the cell to the extracellular matrix and adherens junctions that link cells to each other—that physically connect the force-generating actin cytoskeleton (CSK) with the extracellular environment. This tight control of binding partner interaction—mediated by vinculin''s autoinhibitory head–tail interaction—allows vinculin to rapidly interact and detach in response to changes in the dynamic forces applied through the cell. In doing so, vinculin modulates the structural composition of focal adhesions and the cell''s ability to generate traction forces and adhesion strength. Recent evidence suggests that vinculin plays a similar role in regulating the fate and function of cell–cell junctions, further underscoring the importance of this protein. Using our lab''s recent work as a starting point, this commentary explores several outstanding questions regarding the nature of vinculin activation and its function within focal adhesions and adherens junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号