首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interpreting contemporary patterns of population structure requires an understanding of the interactions among microevolutionary forces and past demographic events. Here, 4,122 SNP‐containing loci were used to assess structure in southern flounder (Paralichthys lethostigma) sampled across its range in the US Atlantic Ocean (Atlantic) and Gulf of Mexico (Gulf) and relationships among components of genomic variation and spatial and environmental variables were assessed across estuarine population samples in the Gulf. While hierarchical amova revealed significant heterogeneity within and between the Atlantic and Gulf, pairwise comparisons between samples within ocean basins demonstrated that all significant heterogeneity occurred within the Gulf. The distribution of Tajima''s D estimated at a genome‐wide scale differed significantly from equilibrium in all estuaries, with more negative values occurring in the Gulf. Components of genomic variation were significantly associated with environmental variables describing individual estuaries, and environment explained a larger component of variation than spatial proximity. Overall, results suggest that there is genetic spatial autocorrelation caused by shared larval sources for proximal nurseries (migration/drift), but that it is modified by environmentally driven differentiation (selection). This leads to conflicting signals in different parts of the genome and creates patterns of divergence that do not correspond to paradigms of strong local directional selection.  相似文献   

2.
Atlantic herring (Clupea harengus), a vital ecosystem component and target of the largest Northwest Atlantic pelagic fishery, undergo seasonal spawning migrations that result in elusive sympatric population structure. Herring spawn mostly in fall or spring, and genomic differentiation was recently detected between these groups. Here we used a subset of this differentiation, 66 single nucleotide polymorphisms (SNPs) to analyze the temporal dynamics of this local adaptation and the applicability of SNP subsets in stock assessment. We showed remarkable temporal stability of genomic differentiation corresponding to spawning season, between samples taken a decade apart (2005 N = 90 vs. 2014 N = 71) in the Gulf of St. Lawrence, and new evidence of limited interbreeding between spawning components. We also examined an understudied and overexploited herring population in Bras d'Or lake (N = 97); using highly reduced SNP panels (NSNPs > 6), we verified little‐known sympatric spawning populations within this unique inland sea. These results describe consistent local adaptation, arising from asynchronous reproduction in a migratory and dynamic marine species. Our research demonstrates the efficiency and precision of SNP‐based assessments of sympatric subpopulations; and indeed, this temporally stable local adaptation underlines the importance of such fine‐scale management practices.  相似文献   

3.
Analysis of variation of biological and morphometric characteristics of cod Gadus morhua from the Gulf of Ura-a water area in the composition of Motovskii Bay of the Barents Sea was performed. The material was collected from 1999 to 2006 during spawning of the Atlantic cod. Parameters such as length, weight, sex composition, maturity stage, age, otolith structure, and variation of plastic characters were analyzed. It was shown that the Gulf of Ura, parallel to individuals of junior age groups, is inhabited by cod in the spawning state aged 5–6 months and older with coastal and Atlantic types of otolith.  相似文献   

4.
  1. Climate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.
  2. The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above‐average temperatures since the mid‐2000s with divergent bottom temperature trends at subregional scales.
  3. Concurrently, the Barents Sea stock of Atlantic cod Gadus morhua, one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.
  4. We examined the influence of food availability and temperature on cod expansion using a comprehensive data set on cod stomach fullness stratified by subregions characterized by divergent temperature trends. We then tested whether food availability, as indexed by cod stomach fullness, played a role in cod expansion in subregions that were warming, cooling, or showed no trend.
  5. The greatest increase in cod occupancy occurred in three northern subregions with contrasting temperature trends. Cod apparently benefited from initial high food availability in these regions that previously had few large‐bodied fish predators.
  6. The stomach fullness in the northern subregions declined rapidly after a few years of high cod abundance, suggesting that the arrival of cod caused a top‐down effect on the prey base. Prolonged cod residency in the northern Barents Sea is, therefore, not a certainty.
  相似文献   

5.
The processes leading to the emergence of new species are poorly understood in marine plankton, where weak physical barriers and homogeneous environmental conditions limit spatial and ecological segregation. Here, we combine molecular and ecological information from a long‐term time series and propose Pseudo‐nitzschia allochrona, a new cryptic planktonic diatom, as a possible case of speciation by temporal segregation. The new species differs in several genetic markers (18S, 28S and ITS rDNA fragments and rbcL) from its closest relatives, which are morphologically very similar or identical, and is reproductively isolated from its sibling species P. arenysensis. Data from a long‐term plankton time series show P. allochrona invariably occurring in summer–autumn in the Gulf of Naples, where its closely related species P. arenysensis, P. delicatissima, and P. dolorosa are instead found in winter–spring. Temperature and nutrients are the main factors associated with the occurrence of P. allochrona, which could have evolved in sympatry by switching its phenology and occupying a new ecological niche. This case of possible speciation by time shows the relevance of combining ecological time series with molecular information to shed light on the eco‐evolutionary dynamics of marine microorganisms.  相似文献   

6.
Aldabrachelys gigantea (Aldabra giant tortoise) is one of only two giant tortoise species left in the world and survives as a single wild population of over 100,000 individuals on Aldabra Atoll, Seychelles. Despite this large current population size, the species faces an uncertain future because of its extremely restricted distribution range and high vulnerability to the projected consequences of climate change. Captive‐bred A. gigantea are increasingly used in rewilding programs across the region, where they are introduced to replace extinct giant tortoises in an attempt to functionally resurrect degraded island ecosystems. However, there has been little consideration of the current levels of genetic variation and differentiation within and among the islands on Aldabra. As previous microsatellite studies were inconclusive, we combined low‐coverage and double‐digest restriction‐associated DNA (ddRAD) sequencing to analyze samples from 33 tortoises (11 from each main island). Using 5426 variant sites within the tortoise genome, we detected patterns of within‐island population structure, but no differentiation between the islands. These unexpected results highlight the importance of using genome‐wide genetic markers to capture higher‐resolution genetic structure to inform future management plans, even in a seemingly panmictic population. We show that low‐coverage ddRAD sequencing provides an affordable alternative approach to conservation genomic projects of non‐model species with large genomes.  相似文献   

7.
The greater amberjack (Seriola dumerili) is a commercially and recreationally important marine fish species in the southeastern United States, where it has been historically managed as two non-mixing stocks (Gulf of Mexico and Atlantic). Mark-recapture studies and analysis of mitochondrial DNA have suggested the two stocks are demographically independent; however, little is currently known about when and where spawning occurs in Gulf of Mexico amberjack, and whether stock mixture occurs on breeding grounds. The primary objective of this study was to quantify stock mixture among breeding populations of amberjack collected from the Atlantic and Gulf of Mexico. Genetic data based on 11 loci identified very low, though statistically significant differentiation among Gulf of Mexico samples (GST = 0.007, \(G_{{{\text{ST}}}}^{\prime }\) = 0.009; all P?=?0.001) and between reproductive adults collected from two spawning areas (GST = 0.007, \(G_{{{\text{ST}}}}^{\prime }\) = 0.014; all P?=?0.001). Naïve Bayesian mixture analysis supported a single genetic cluster [p(S|data)?=?0.734] whereas trained clustering (using Atlantic and Gulf spawning fish) gave the highest support to a two-cluster model (p(S|data)?=?1.0). Our results support the argument that the genetic structuring of greater amberjack is more complex than the previously assumed two, non-mixing stock model. Although our data provide evidence of limited population structure, we argue in favour of non-panmixia among reproductive fish collected from the Gulf of Mexico and Florida Keys.  相似文献   

8.
Genetic methods for the estimation of population size can be powerful alternatives to conventional methods. Close‐kin mark–recapture (CKMR) is based on the principles of conventional mark–recapture, but instead of being physically marked, individuals are marked through their close kin. The aim of this study was to evaluate the potential of CKMR for the estimation of spawner abundance in Atlantic salmon and how age, sex, spatial, and temporal sampling bias may affect CKMR estimates. Spawner abundance in a wild population was estimated from genetic samples of adults returning in 2018 and of their potential offspring collected in 2019. Adult samples were obtained in two ways. First, adults were sampled and released alive in the breeding habitat during spawning surveys. Second, genetic samples were collected from out‐migrating smolts PIT‐tagged in 2017 and registered when returning as adults in 2018. CKMR estimates based on adult samples collected during spawning surveys were somewhat higher than conventional counts. Uncertainty was small (CV < 0.15), due to the detection of a high number of parent–offspring pairs. Sampling of adults was age‐ and size‐biased and correction for those biases resulted in moderate changes in the CKMR estimate. Juvenile dispersal was limited, but spatially balanced sampling of adults rendered CKMR estimates robust to spatially biased sampling of juveniles. CKMR estimates based on returning PIT‐tagged adults were approximately twice as high as estimates based on samples collected during spawning surveys. We suggest that estimates based on PIT‐tagged fish reflect the total abundance of adults entering the river, while estimates based on samples collected during spawning surveys reflect the abundance of adults present in the breeding habitat at the time of spawning. Our study showed that CKMR can be used to estimate spawner abundance in Atlantic salmon, with a moderate sampling effort, but a carefully designed sampling regime is required.  相似文献   

9.
High‐throughput DNA sequencing technologies make it possible now to sequence entire genomes relatively easily. Complete genomic information obtained by whole‐genome resequencing (WGS) can aid in identifying and delineating species even if they are extremely young, cryptic, or morphologically difficult to discern and closely related. Yet, for taxonomic or conservation biology purposes, WGS can remain cost‐prohibitive, too time‐consuming, and often constitute a “data overkill.” Rapid and reliable identification of species (and populations) that is also cost‐effective is made possible by species‐specific markers that can be discovered by WGS. Based on WGS data, we designed a PCR restriction fragment length polymorphism (PCR‐RFLP) assay for 19 Neotropical Midas cichlid populations (Amphilophus cf. citrinellus), that includes all 13 described species of this species complex. Our work illustrates that identification of species and populations (i.e., fish from different lakes) can be greatly improved by designing genetic markers using available “high resolution” genomic information. Yet, our work also shows that even in the best‐case scenario, when whole‐genome resequencing information is available, unequivocal assignments remain challenging when species or populations diverged very recently, or gene flow persists. In summary, we provide a comprehensive workflow on how to design RFPL markers based on genome resequencing data, how to test and evaluate their reliability, and discuss the benefits and pitfalls of our approach.  相似文献   

10.
Understanding reproductive patterns in endangered species is critical for supporting their recovery efforts. In this study we use a combination of paired‐parent and single‐parent assignments to examine the reproductive patterns in an endangered population of sockeye salmon (Oncorhynchus nerka) that uses Redfish Lake in central Idaho as a spawning and nursery lake. Recovery efforts include the release of maturing adults into the lake for volitional spawning. The lake is also inhabited by a population of resident O. nerka that is genetically indistinguishable, but phenotypically smaller, to the maturing adults released into the lake. The resident population is difficult to sample and the reproductive patterns between the two groups are unknown. We used results of paired‐ and single‐parentage assignments to specifically examine the reproductive patterns of male fish released into the lake under an equal sex ratio and a male‐biased sex ratio. Assignment results of offspring leaving the lake indicated a reproductive shift by males under the two scenarios. Males displayed an assortative mating pattern under an equal sex ratio and spawned almost exclusively with the released females. Under a male‐biased sex ratio most males shifted to a negative‐assortative mating pattern and spawned with smaller females from the resident population. These males were younger and smaller than males that spawned with released females suggesting they were unable to compete with larger males for spawning opportunities with the larger, released females. The results provided insights into the reproductive behavior of this endangered population and has implications for recovery efforts.  相似文献   

11.
Atlantic cod (Gadus morhua) encompasses many different populations or stocks, which in part are managed separately. In the northeast Atlantic cod is divided into two main management units; northeast Arctic cod and coastal cod. These two groups have traditionally been separated by otolith classification. In this study, the power of different classes of genetic markers in separating the two cod groups was investigated. The variation in thirteen genetic markers, including allozymes, haemoglobin, the scDNA locus Pantophysin (Pan I) and a number of microsatellites was investigated, and mixed stock analysis and individual assignment tests were performed on samples comprising a mixture of individuals of putative coastal and oceanic type cod. The genetic analyses showed a large genetic differentiation between outer stations and stations located closer to the mainland shore. Mixed stock analysis and individual assignment tests used for estimation of stock proportions gave results similar to those obtained by otolith classification. Guest editors: J. Davenport, G. Burnell, T. Cross, M. Emmerson, R. McAllen, R. Ramsay & E. Rogan Challenges to Marine Ecosystems  相似文献   

12.
Atlantic cod displays a range of phenotypic and genotypic variations, which includes the differentiation into coastal stationary and offshore migratory types of cod that co‐occur in several parts of its distribution range and are often sympatric on the spawning grounds. Differentiation of these ecotypes may involve both historical separation and adaptation to ecologically distinct environments, the genetic basis of which is now beginning to be unravelled. Genomic analyses based on recent sequencing advances are able to document genomic divergence in more detail and may facilitate the exploration of causes and consequences of genome‐wide patterns. We examined genomic divergence between the stationary and migratory types of cod in the Northeast Atlantic, using next‐generation sequencing of pooled DNA from each of two population samples. Sequence data was mapped to the published cod genome sequence, arranged in more than 6000 scaffolds (611 Mb). We identified 25 divergent scaffolds (26 Mb) with a higher than average gene density, against a backdrop of overall moderate genomic differentiation. Previous findings of localized genomic divergence in three linkage groups were confirmed, including a large (15 Mb) genomic region, which seems to be uniquely involved in the divergence of migratory and stationary cod. The results of the pooled sequencing approach support and extend recent findings based on single‐nucleotide polymorphism markers and suggest a high degree of reproductive isolation between stationary and migratory cod in the North‐east Atlantic.  相似文献   

13.
AimEvolutionary history of natural populations can be confounded by human intervention such as the case of decorator worm species Diopatra (Onuphidae), which have a history of being transported through anthropogenic activities. Because they build tubes and act as ecosystem engineers, they can have a large impact on the overall ecosystem in which they occur. One conspicuous member, Diopatra biscayensis, which was only described in 2012, has a fragmented distribution that includes the Bay of Biscay and the Normanno‐Breton Gulf in the English Channel. This study explores the origin of these worms in the Normanno‐Breton region, which has been debated to either be the result of a historic range contraction from a relic continuous population or a more recent introduction.LocationNortheastern Atlantic, the Bay of Biscay, and the Normanno‐Breton Gulf.MethodsWe utilized a RAD‐tag‐based SNP approach to create a reduced genomic data set to recover fine‐scale population structure and infer which hypothesis best describes the D. biscayensis biogeographic distribution. The reduced genomic data set was used to calculate standard genetic diversities and genetic differentiation statistics, and utilized various clustering analyses, including PCAs, DAPC, and admixture.ResultsClustering analyses were consistent with D. biscayensis as a single population spanning the Bay of Biscay to the Normanno‐Breton Gulf in the English Channel, although unexpected genetic substructure was recovered from Arcachon Bay, in the middle of its geographic range. Consistent with a hypothesized introduction, the isolated Sainte‐Anne locality in the Normanno‐Breton Gulf was recovered to be a subset of the diversity found in the rest of the Bay of Biscay.Main conclusionsThese results are congruent with previous simulations that did not support connectivity from the Bay of Biscay to the Normanno‐Breton Gulf by natural dispersal. These genomic findings, with support from previous climatic studies, further support the hypothesis that D. biscayensis phylogeographic connectivity is the result of introductions, likely through the regions’ rich shellfish aquaculture, and not of a historically held range contraction.  相似文献   

14.
The discovery of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its development as a genome editing tool has revolutionized the field of molecular biology. In the DNA damage field, CRISPR has brought an alternative to induce endogenous double‐strand breaks (DSBs) at desired genomic locations and study the DNA damage response and its consequences. Many systems for sgRNA delivery have been reported in order to efficiently generate this DSB, including lentiviral vectors. However, some of the consequences of these systems are not yet well understood. Here, we report that lentiviral‐based sgRNA vectors can integrate into the endogenous genomic target location, leading to undesired activation of the target gene. By generating a DSB in the regulatory region of the ABCB1 gene using a lentiviral sgRNA vector, we can induce the formation of Taxol‐resistant colonies. We show that these colonies upregulate ABCB1 via integration of the EEF1A1 and the U6 promoters from the sgRNA vector. We believe that this is an unreported CRISPR/Cas9 on‐target effect that researchers need to be aware of when using lentiviral vectors for genome editing.  相似文献   

15.
Despite the enormous economic and ecological importance of marine organisms, the spatial scales of adaptation and biocomplexity remain largely unknown. Yet, the preservation of local stocks that possess adaptive diversity is critical to the long-term maintenance of productive stable fisheries and ecosystems. Here, we document genomic evidence of range-wide adaptive differentiation in a broadcast spawning marine fish, Atlantic cod (Gadus morhua), using a genome survey of single nucleotide polymorphisms. Of 1641 gene-associated polymorphisms examined, 70 (4.2%) tested positive for signatures of selection using a Bayesian approach. We identify a subset of these loci (n = 40) for which allele frequencies show parallel temperature-associated clines (p < 0.001, r2 = 0.89) in the eastern and western north Atlantic. Temperature associations were robust to the statistical removal of geographic distance or latitude effects, and contrasted ‘neutral’ loci, which displayed no temperature association. Allele frequencies at temperature-associated loci were significantly correlated, spanned three linkage groups and several were successfully annotated supporting the involvement of multiple independent genes. Our results are consistent with the evolution and/or selective sweep of multiple genes in response to ocean temperature, and support the possibility of a new conservation paradigm for non-model marine organisms based on genomic approaches to resolving functional and adaptive diversity.  相似文献   

16.
  1. Dietary specialization is common in animals and has important implications for individual fitness, inter‐ and intraspecific competition, and the adaptive potential of a species. Diet composition can be influenced by age‐ and sex‐related factors including an individual''s morphology, social status, and acquired skills; however, specialization may only be necessary when competition is intensified by high population densities or increased energetic demands.
  2. To better understand the role of age‐ and sex‐related dietary specialization in facilitating seasonal resource partitioning, we inferred the contribution of biofilm, microphytobenthos, and benthic invertebrates to the diets of western sandpipers (Calidris mauri) from different demographic groups during mid‐winter (January/February) and at the onset of the breeding migration (April) using stable isotope mixing models. Western sandpipers are sexually dimorphic with females having significantly greater body mass and bill length than males.
  3. Diet composition differed between seasons and among demographic groups. In winter, prey consumption was similar among demographic groups, but, in spring, diet composition differed with bill length and body mass explaining 31% of the total variation in diet composition. Epifaunal invertebrates made up a greater proportion of the diet in males which had lesser mass and shorter bills than females. Consumption of Polychaeta increased with increasing bill length and was greatest in adult females. In contrast, consumption of microphytobenthos, thought to be an important food source for migrating sandpipers, increased with decreasing bill length and was greatest in juvenile males.
  4. Our results provide the first evidence that age‐ and sex‐related dietary specialization in western sandpipers facilitate seasonal resource partitioning that could reduce competition during spring at the onset of the breeding migration.
  5. Our study underscores the importance of examining resource partitioning throughout the annual cycle to inform fitness and demographic models and facilitate conservation efforts.
  相似文献   

17.
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA‐binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) condenses with RNA via liquid–liquid phase separation (LLPS) and that N protein can be recruited in phase‐separated forms of human RNA‐binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N‐terminal IDR and central‐linker IDR, as well as the folded C‐terminal oligomerization domain, while the folded N‐terminal domain and the C‐terminal IDR are not required. N protein phase separation is induced by addition of non‐specific RNA. In addition, N partitions in vitro into phase‐separated forms of full‐length human hnRNPs (TDP‐43, FUS, hnRNPA2) and their low‐complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS‐CoV‐2 viral genome packing and in host‐protein co‐opting necessary for viral replication and infectivity.  相似文献   

18.
Although important factors governing the meiosis have been reported in the embryonic ovary, meiosis in postnatal testis remains poorly understood. Herein, we first report that SRY‐box 30 (Sox30) is an age‐related and essential regulator of meiosis in the postnatal testis. Sox30‐null mice exhibited uniquely impaired testis, presenting the abnormal arrest of germ‐cell differentiation and irregular Leydig cell proliferation. In aged Sox30‐null mice, the observed testicular impairments were more severe. Furthermore, the germ‐cell arrest occurred at the stage of meiotic zygotene spermatocytes, which is strongly associated with critical regulators of meiosis (such as Cyp26b1, Stra8 and Rec8) and sex differentiation (such as Rspo1, Foxl2, Sox9, Wnt4 and Ctnnb1). Mechanistically, Sox30 can activate Stra8 and Rec8, and inhibit Cyp26b1 and Ctnnb1 by direct binding to their promoters. A different Sox30 domain required for regulating the activity of these gene promoters, providing a “fail‐safe” mechanism for Sox30 to facilitate germ‐cell differentiation. Indeed, retinoic acid levels were reduced owing to increased degradation following the elevation of Cyp26b1 in Sox30‐null testes. Re‐expression of Sox30 in Sox30‐null mice successfully restored germ‐cell meiosis, differentiation and Leydig cell proliferation. Moreover, the restoration of actual fertility appeared to improve over time. Consistently, Rec8 and Stra8 were reactivated, and Cyp26b1 and Ctnnb1 were reinhibited in the restored testes. In summary, Sox30 is necessary, sufficient and age‐associated for germ‐cell meiosis and differentiation in testes by direct regulating critical regulators. This study advances our understanding of the regulation of germ‐cell meiosis and differentiation in the postnatal testis.  相似文献   

19.
ObjectivesWhether periodic oral intake of postbiotics positively affects weight regulation and prevents obesity‐associated diseases in vivo is unclear. This study evaluated the action mechanism of Lactobacillus plantarum L‐14 (KTCT13497BP) extract and the effects of its periodic oral intake in a high‐fat‐diet (HFD) mouse model.Materials and methodsMouse pre‐adipocyte 3T3‐L1 cells and human bone marrow mesenchymal stem cells (hBM‐MSC) were treated with L‐14 extract every 2 days during adipogenic differentiation, and the mechanism underlying anti‐adipogenic effects was analysed at cellular and molecular levels. L‐14 extract was orally administrated to HFD‐feeding C57BL/6J mice every 2 days for 7 weeks. White adipose tissue was collected and weighed, and liver and blood serum were analysed. The anti‐adipogenic mechanism of exopolysaccharide (EPS) isolated from L‐14 extract was also analysed using Toll‐like receptor 2 (TLR2) inhibitor C29.ResultsL‐14 extract inhibited 3T3‐L1 and hBM‐MSC differentiation into mature adipocytes by upregulating AMPK signalling pathway in the early stage of adipogenic differentiation. The weight of the HFD + L‐14 group (31.51 ± 1.96 g) was significantly different from that of the HFD group (35.14 ± 3.18 g). L‐14 extract also significantly decreased the serum triacylglycerol/high‐density lipoprotein cholesterol ratio (an insulin resistance marker) and steatohepatitis. In addition, EPS activated the AMPK signalling pathway by interacting with TLR2, consequently inhibiting adipogenesis.ConclusionsEPS from L‐14 extract inhibits adipogenesis via TLR2 and AMPK signalling pathways, and oral intake of L‐14 extract improves obesity and obesity‐associated diseases in vivo. Therefore, EPS can be used to prevent and treat obesity and metabolic disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号