首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Initial exposure of plants to osmotic stress caused by drought, cold, or salinity leads to acclimation, termed acquired tolerance, to subsequent severe stresses. Acquired osmotolerance induced by salt stress is widespread across Arabidopsis (Arabidopsis thaliana) accessions and is conferred by disruption of a nucleotide-binding leucine-rich repeat gene, designated ACQUIRED OSMOTOLERANCE. De-repression of this gene under osmotic stress causes detrimental autoimmunity via ENHANCED DISEASE SUSCEPTIBILITY1 and PHYTOALEXIN DEFICIENT4 (PAD4). However, the mechanism underlying acquired osmotolerance remains poorly understood. Here, we isolated an acquired osmotolerance-defective mutant (aod13) by screening 30,000 seedlings of an ion beam-mutagenized M2 population of Bu-5, an accession with acquired osmotolerance. We found that AOD13 encodes the dual-specificity phosphatase MAP KINASE PHOSPHATASE1 (MKP1), which negatively regulates MITOGEN-ACTIVATED PROTEIN KINASE3/6 (MPK3/6). Consistently, MPK3/6 activation was greater in aod13 than in the Bu-5 wild-type (WT). The aod13 mutant was sensitive to osmotic stress but tolerant to salt stress. Under osmotic stress, pathogenesis-related genes were strongly induced in aod13 but not in the Bu-5 WT. Loss of PAD4 in pad4 aod13 plants did not restore acquired osmotolerance, implying that activation of immunity independent of PAD4 renders aod13 sensitive to osmotic stress. These findings suggest that AOD13 (i.e. MKP1) promotes osmotolerance by suppressing the PAD4-independent immune response activated by MPK3/6.

Under osmotic stress, MAP KINASE PHOSPHATASE1 represses the MITOGEN-ACTIVATED PROTEIN KINASE3/6-dependent immune response that impairs osmotolerance of Arabidopsis thaliana.  相似文献   

2.
Stomata are specialized epidermal structures that regulate gas (CO(2) and O(2)) and water vapor exchange between plants and their environment. In Arabidopsis thaliana, stomatal development is preceded by asymmetric cell divisions, and stomatal distribution follows the one-cell spacing rule, reflecting the coordination of cell fate specification. Stomatal development and patterning are regulated by both genetic and environmental signals. Here, we report that Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6, two environmentally responsive mitogen-activated protein kinases (MAPKs), and their upstream MAPK kinases, MKK4 and MKK5, are key regulators of stomatal development and patterning. Loss of function of MKK4/MKK5 or MPK3/MPK6 disrupts the coordinated cell fate specification of stomata versus pavement cells, resulting in the formation of clustered stomata. Conversely, activation of MKK4/MKK5-MPK3/MPK6 causes the suppression of asymmetric cell divisions and stomatal cell fate specification, resulting in a lack of stomatal differentiation. We further establish that the MKK4/MKK5-MPK3/MPK6 module is downstream of YODA, a MAPKKK. The establishment of a complete MAPK signaling cascade as a key regulator of stomatal development and patterning advances our understanding of the regulatory mechanisms of intercellular signaling events that coordinate cell fate specification during stomatal development.  相似文献   

3.
Mitogen-activated protein (MAP) kinase phosphatases are important negative regulators of the levels and kinetics of MAP kinase activation that modulate cellular responses. The dual-specificity phosphatase MAP KINASE PHOSPHATASE1 (MKP1) was previously shown to regulate MAP KINASE6 (MPK6) activation levels and abiotic stress responses in Arabidopsis thaliana. Here, we report that the mkp1 null mutation in the Columbia (Col) accession results in growth defects and constitutive biotic defense responses, including elevated levels of salicylic acid, camalexin, PR gene expression, and resistance to the bacterial pathogen Pseudomonas syringae. PROTEIN TYROSINE PHOSPHATASE1 (PTP1) also interacts with MPK6, but the ptp1 null mutant shows no aberrant growth phenotype. However, the pronounced constitutive defense response of the mkp1 ptp1 double mutant reveals that MKP1 and PTP1 repress defense responses in a coordinated fashion. Moreover, mutations in MPK3 and MPK6 distinctly suppress mkp1 and mkp1 ptp1 phenotypes, indicating that MKP1 and PTP1 act as repressors of inappropriate MPK3/MPK6-dependent stress signaling. Finally, we provide evidence that the natural modifier of mkp1 in Col is largely the disease resistance gene homolog SUPPRESSOR OF npr1-1, CONSTITUTIVE 1 (SNC1) that is absent in the Wassilewskija accession. Our data thus indicate a major role of MKP1 and PTP1 in repressing salicylic acid biosynthesis in the autoimmune-like response caused by SNC1.  相似文献   

4.
5.
Sphingolipids are the structural components of membrane lipid bilayers and act as signaling molecules in many cellular processes.Serine palmitoyltransferase(SPT) is the first committed and rate-limiting enzyme in the de novo sphingolipids biosynthetic pathway.The core SPT enzyme is a heterodimer consisting of LONG-CHAIN BASE1(LCB1) and LCB2 subunits.SPT activity is inhibited by orosomucoid proteins and stimulated by small subunits of SPT(ssSPTs).However,whether LCB1 is modified and how such modi...  相似文献   

6.
Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3(MAPK3 or MPK3) and MPK6 play important signaling roles in plant immunity and growth/development. MAPK KINASE4(MKK4)and MKK5 function redundantly upstream of MPK3 and MPK6 in these processes. YODA(YDA), also known as MAPK KINASE KINASE4(MAPKKK4), is upstream of MKK4/MKK5 and forms a complete MAPK cascade(YDA–MKK4/MKK5–MPK3/MPK6) in regulating plant growth and development. In plant immunity, MAPKKK3 and MAPKKK5 function redundantly upstream of the same...  相似文献   

7.
The Pseudomonas syringae effector AvrB targets multiple host proteins during infection, including the plant immune regulator RPM1-INTERACTING PROTEIN4 (RIN4) and RPM1-INDUCED PROTEIN KINASE (RIPK). In the presence of AvrB, RIPK phosphorylates RIN4 at Thr-21, Ser-160, and Thr-166, leading to activation of the immune receptor RPM1. Here, we investigated the role of RIN4 phosphorylation in susceptible Arabidopsis thaliana genotypes. Using circular dichroism spectroscopy, we show that RIN4 is a disordered protein and phosphorylation affects protein flexibility. RIN4 T21D/S160D/T166D phosphomimetic mutants exhibited enhanced disease susceptibility upon surface inoculation with P. syringae, wider stomatal apertures, and enhanced plasma membrane H+-ATPase activity. The plasma membrane H+-ATPase AHA1 is highly expressed in guard cells, and its activation can induce stomatal opening. The ripk knockout also exhibited a strong defect in pathogen-induced stomatal opening. The basal level of RIN4 Thr-166 phosphorylation decreased in response to immune perception of bacterial flagellin. RIN4 Thr166D lines exhibited reduced flagellin-triggered immune responses. Flagellin perception did not lower RIN4 Thr-166 phosphorylation in the presence of strong ectopic expression of AvrB. Taken together, these results indicate that the AvrB effector targets RIN4 in order to enhance pathogen entry on the leaf surface as well as dampen responses to conserved microbial features.  相似文献   

8.
9.
While interest in photosynthetic thermal acclimation has been stimulated by climate warming, comparing results across studies requires consistent terminology. We identify five types of photosynthetic adjustments in warming experiments: photosynthesis as measured at the high growth temperature, the growth temperature, and the thermal optimum; the photosynthetic thermal optimum; and leaf-level photosynthetic capacity. Adjustments of any one of these variables need not mean a concurrent adjustment in others, which may resolve apparently contradictory results in papers using different indicators of photosynthetic acclimation. We argue that photosynthetic thermal acclimation (i.e., that benefits a plant in its new growth environment) should include adjustments of both the photosynthetic thermal optimum (T opt) and photosynthetic rates at the growth temperature (A growth), a combination termed constructive adjustment. However, many species show reduced photosynthesis when grown at elevated temperatures, despite adjustment of some photosynthetic variables, a phenomenon we term detractive adjustment. An analysis of 70 studies on 103 species shows that adjustment of T opt and A growth are more common than adjustment of other photosynthetic variables, but only half of the data demonstrate constructive adjustment. No systematic differences in these patterns were found between different plant functional groups. We also discuss the importance of thermal acclimation of respiration for net photosynthesis measurements, as respiratory temperature acclimation can generate apparent acclimation of photosynthetic processes, even if photosynthesis is unaltered. We show that while dark respiration is often used to estimate light respiration, the ratio of light to dark respiration shifts in a non-predictable manner with a change in leaf temperature.  相似文献   

10.
Mitogen‐activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin‐related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1‐1 as a mutant that displays hypersensitivity in auxin‐responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin‐responsive cell expansion assays, suggesting that this MPK cascade affects auxin‐influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho‐like GTPases from Plants (ROP) small GTPase family. Similar to mpk1‐1 and mkk3‐1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin‐responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin‐responsive cell expansion are mediated through phosphorylation‐dependent modulation of ROP activity. Our data suggest a MKK3 ? MPK1 ? RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion.  相似文献   

11.
Abscisic acid (ABA) is a phytohormone that plays a fundamental role in plant development and stress response, especially in the regulation of stomatal closure in response to water deficit stress. The signal transduction that occurs in response to ABA and drought stress is mediated by protein phosphorylation and ubiquitination. This research identified Arabidopsis thaliana RING ZINC-FINGER PROTEIN34 (RZP34; renamed here as CHY ZINC-FINGER AND RING PROTEIN1 [CHYR1]) as an ubiquitin E3 ligase. CHYR1 expression was significantly induced by ABA and drought, and along with its corresponding protein, was expressed mainly in vascular tissues and stomata. Analysis of CHYR1 gain-of-function and loss-of-function plants revealed that CHYR1 promotes ABA-induced stomatal closure, reactive oxygen species production, and plant drought tolerance. Furthermore, CHYR1 interacted with SNF1-RELATED PROTEIN KINASE2 (SnRK2) kinases and could be phosphorylated by SnRK2.6 on the Thr-178 residue. Overexpression of CHYR1T178A, a phosphorylation-deficient mutant, interfered with the proper function of CHYR1, whereas CHYR1T178D phenocopied the gain of function of CHYR1. Thus, this study identified a RING-type ubiquitin E3 ligase that functions positively in ABA and drought responses and detailed how its ubiquitin E3 ligase activity is regulated by SnRK2.6-mediated protein phosphorylation.  相似文献   

12.
Most plants show considerable capacity to adjust their photosynthetic characteristics to their growth temperatures (temperature acclimation). The most typical case is a shift in the optimum temperature for photosynthesis, which can maximize the photosynthetic rate at the growth temperature. These plastic adjustments can allow plants to photosynthesize more efficiently at their new growth temperatures. In this review article, we summarize the basic differences in photosynthetic reactions in C3, C4, and CAM plants. We review the current understanding of the temperature responses of C3, C4, and CAM photosynthesis, and then discuss the underlying physiological and biochemical mechanisms for temperature acclimation of photosynthesis in each photosynthetic type. Finally, we use the published data to evaluate the extent of photosynthetic temperature acclimation in higher plants, and analyze which plant groups (i.e., photosynthetic types and functional types) have a greater inherent ability for photosynthetic acclimation to temperature than others, since there have been reported interspecific variations in this ability. We found that the inherent ability for temperature acclimation of photosynthesis was different: (1) among C3, C4, and CAM species; and (2) among functional types within C3 plants. C3 plants generally had a greater ability for temperature acclimation of photosynthesis across a broad temperature range, CAM plants acclimated day and night photosynthetic process differentially to temperature, and C4 plants was adapted to warm environments. Moreover, within C3 species, evergreen woody plants and perennial herbaceous plants showed greater temperature homeostasis of photosynthesis (i.e., the photosynthetic rate at high-growth temperature divided by that at low-growth temperature was close to 1.0) than deciduous woody plants and annual herbaceous plants, indicating that photosynthetic acclimation would be particularly important in perennial, long-lived species that would experience a rise in growing season temperatures over their lifespan. Interestingly, across growth temperatures, the extent of temperature homeostasis of photosynthesis was maintained irrespective of the extent of the change in the optimum temperature for photosynthesis (T opt), indicating that some plants achieve greater photosynthesis at the growth temperature by shifting T opt, whereas others can also achieve greater photosynthesis at the growth temperature by changing the shape of the photosynthesis–temperature curve without shifting T opt. It is considered that these differences in the inherent stability of temperature acclimation of photosynthesis would be reflected by differences in the limiting steps of photosynthetic rate.  相似文献   

13.
14.
Histone H2B monoubiquitination (H2Bub1) is recognized as a regulatory mechanism that controls a range of cellular processes. We previously showed that H2Bub1 was involved in responses to biotic stress in Arabidopsis. However, the molecular regulatory mechanisms of H2Bub1 in controlling responses to abiotic stress remain limited. Here, we report that HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 played important regulatory roles in response to salt stress. Phenotypic analysis revealed that H2Bub1 mutants confer decreased tolerance to salt stress. Further analysis showed that H2Bub1 regulated the depolymerization of microtubules (MTs), the expression of PROTEIN TYROSINE PHOSPHATASE1 (PTP1) and MAP KINASE PHOSPHATASE (MKP) genes – DsPTP1, MKP1, IBR5, PHS1, and was required for the activation of mitogen‐activated protein kinase3 (MAP kinase3, MPK3) and MPK6 in response to salt stress. Moreover, both tyrosine phosphorylation and the activation of MPK3 and MPK6 affected MT stability in salt stress response. Thus, the results indicate that H2Bub1 regulates salt stress‐induced MT depolymerization, and the PTP–MPK3/6 signalling module is responsible for integrating signalling pathways that regulate MT stability, which is critical for plant salt stress tolerance.  相似文献   

15.
Larrea divaricata, a desert evergreen shrub, has a remarkable ability to adjust its photosynthetic temperature response characteristics to changing temperature conditions. In its native habitat on the floor of Death Valley, California, plants of this C3 species when provided with adequate water are able to maintain a relatively high and constant photosynthetic activity throughout the year even though the mean daily maximum temperature varies by nearly 30 C from winter to summer. The temperature dependence of light-saturated net photosynthesis varies in concert with these seasonal temperature changes whereas the photosynthetic rate at the respective optimum temperatures shows little change.

Experiments on plants of the same age, grown at day/night temperatures of 20/15, 35/25, and 45/33 C with the same conditions of day length and other environmental factors, showed a similar photosynthetic acclimation response as observed in nature. An analysis was made of a number of factors that potentially can contribute to the observed changes in the temperature dependence of net CO2 uptake at normal CO2 and O2 levels. These included stomatal conductance, respiration, O2 inhibition of photosynthesis, and nonstomatal limitations of CO2 diffusive transport. None of these factors, separately or taken together, can account for the observed acclimation responses. Measurements under high saturating CO2 concentrations provide additional evidence that the observed adaptive responses are primarily the result of changes in intrinsic characteristics of the photosynthetic machinery at the cellular or subcellular levels. Two apparently separate effects of the growth temperature regime can be distinguished: one involves an increased capacity for photosynthesis at low, rate-limiting temperatures with decreased growth temperature, and the other an increased thermal stability of key components of the photosynthetic apparatus with increased growth temperature.

  相似文献   

16.
17.
Multivesicular bodies (MVBs) play essential roles in many cellular processes. The MVB pathway requires reversible membrane association of the endosomal sorting complexes required for transports (ESCRTs) for sustained protein trafficking. Membrane dissociation of ESCRTs is catalyzed by the AAA ATPase SKD1, which is stimulated by LYST-INTERACTING PROTEIN 5 (LIP5). We report here that LIP5 is a target of pathogen-responsive mitogen-activated protein kinases (MPKs) and plays a critical role in plant basal resistance. Arabidopsis LIP5 interacts with MPK6 and MPK3 and is phosphorylated in vitro by activated MPK3 and MPK6 and in vivo upon expression of MPK3/6-activating NtMEK2DD and pathogen infection. Disruption of LIP5 has little effects on flg22-, salicylic acid-induced defense responses but compromises basal resistance to Pseudomonas syringae. The critical role of LIP5 in plant basal resistance is dependent on its ability to interact with SKD1. Mutation of MPK phosphorylation sites in LIP5 does not affect interaction with SKD1 but reduces the stability and compromises the ability to complement the lip5 mutant phenotypes. Using the membrane-selective FM1–43 dye and transmission electron microscopy, we demonstrated that pathogen infection increases formation of both intracellular MVBs and exosome-like paramural vesicles situated between the plasma membrane and the cell wall in a largely LIP5-dependent manner. These results indicate that the MVB pathway is positively regulated by pathogen-responsive MPK3/6 through LIP5 phosphorylation and plays a critical role in plant immune system likely through relocalization of defense-related molecules.  相似文献   

18.
Abscisic acid (ABA) plays a major role in plant development and adaptation to severe environmental conditions. ABA evokes cellular events to regulate stomatal apertures and thus contributes to the plant’s ability to respond to abiotic stresses. Reactive oxygen species (ROS) are produced in response to ABA and mediate ABA-induced stomatal closure. We have shown that two MAP kinases, MPK9 and MPK12, are highly and preferentially expressed in guard cells and function as positive regulators of ROS-mediated ABA signaling in guard cells. Cell biological and electrophysiological analyses demonstrated that MPK9 and MPK12 act downstream of ROS and cytosolic Ca2+ and upstream of anion channels in the guard cell ABA signaling cascade. Plant pathogens use stomata as the primary gateway to enter into their hosts, and previous studies have indicated crosstalk between ABA and defense signaling. Here we show that mpk9-1/12-1 double mutants are highly susceptible to Pseudomonas syringae DC3000 compared to WT plants. These results suggest that the regulation of stomatal apertures by MPK9 and MPK12 contributes to the first line of defense against pathogens.  相似文献   

19.
We investigated the acclimation of Chondrus crispus to growth at 5°C and 20°C in the laboratory. We were specifically interested in the responses of light-limited photosynthesis to temperature and the effects of short-term thermal changes (of the order of minutes). Thermal acclimation to constant temperatures over 3–4 weeks had significant effects on the light-use characteristics of this species such that in comparison with those grown at 5°C, 20°C-grown plants had higher concentrations of chlorophyll a and total phycobilins, which were associated with larger photosynthetic unit sizes. Plants grown at the higher temperature had greater photosynthetic efficiencies (α) and higher rates of light-limited photosynthesis at a given photon flux density than did plants acclimated to 5°C. Plants acclimated to 20°C were less sensitive to short-term temperature changes than were 5°C-acclimated plants. These results are discussed in terms of (1) the effects of growth temperature on light harvesting and (2) the implications of exposure to constant temperature for short-term thermal responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号