首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A phylogenetic tree for acrodont lizards (Chamaeleonidae and Agamidae) is established based on 1434 bases (1041 informative) of aligned DNA positions from a 1685-1778 base pair region of the mitochondrial genome. Sequences from three protein-coding genes (ND1, ND2, and COI) are combined with sequences from eight intervening tRNA genes for samples of 70 acrodont taxa and two outgroups. Parsimony analysis of nucleotide sequences identifies eight major clades in the Acrodonta. Most agamid lizards are placed into three distinct clades. One clade is composed of all taxa occurring in Australia and New Guinea; Physignathus cocincinus from Southeast Asia is the sister taxon to the Australia-New Guinea clade. A second clade is composed of taxa occurring from Tibet and the Indian Subcontinent east through South and East Asia. A third clade is composed of taxa occurring from Africa east through Arabia and West Asia to Tibet and the Indian Subcontinent. These three clades contain all agamid lizards except Uromastyx, Leiolepis, and Hydrosaurus, which represent three additional clades of the Agamidae. The Chamaeleonidae forms another clade weakly supported as the sister taxon to the Agamidae. All eight clades of the Acrodonta contain members occurring on land masses derived from Gondwanaland. A hypothesis of agamid lizards rafting with Gondwanan plates is examined statistically. This hypothesis suggests that the African/West Asian clade is of African or Indian origin, and the South Asian clade is either of Indian or Southeast Asian origin. The shortest tree suggests a possible African origin for the former and an Indian origin for the latter, but this result is not statistically robust. The Australia-New Guinea clade rafted with the Australia-New Guinea plate and forms the sister group to a Southeast Asian taxon that occurs on plates that broke from northern Australia-New Guinea. Other acrodont taxa are inferred to be associated with the plates of Afro-Arabia and Madagascar (Chameleonidae), India (Uromastyx), or southeast Asia (Hydrosaurus and Leiolepis). Introduction of different biotic elements to Asia by way of separate Gondwanan plates may be a major theme of Asian biogeography. Three historical events may be responsible for the sharp faunal barrier between Southeast Asia and Australia-New Guinea, known as Wallace's line: (1) primary vicariance caused by plate separations; (2) secondary contact of Southeast Asian plates with Eurasia, leading to dispersal from Eurasia into Southeast Asia, and (3) dispersal of the Indian fauna (after collision of that subcontinent) to Southeast Asia. Acrodont lizards show the first and third of these biogeographic patterns and anguid lizards exhibit the second pattern. Modern faunal diversity may be influenced primarily by historical events such as tectonic collisions and land bridge connections, which are expected to promote episodic turnover of continental faunas by introducing new faunal elements into an area. Repeated tectonic collisions may be one of the most important phenomena promoting continental biodiversity. Phylogenetics is a powerful method for investigating these processes.  相似文献   

2.
Northeast India, the only region which currently forms a land bridge between the Indian subcontinent and Southeast Asia, has been proposed as an important corridor for the initial peopling of East Asia. Given that the Austro-Asiatic linguistic family is considered to be the oldest and spoken by certain tribes in India, Northeast India and entire Southeast Asia, we expect that populations of this family from Northeast India should provide the signatures of genetic link between Indian and Southeast Asian populations. In order to test this hypothesis, we analyzed mtDNA and Y-Chromosome SNP and STR data of the eight groups of the Austro-Asiatic Khasi from Northeast India and the neighboring Garo and compared with that of other relevant Asian populations. The results suggest that the Austro-Asiatic Khasi tribes of Northeast India represent a genetic continuity between the populations of South and Southeast Asia, thereby advocating that northeast India could have been a major corridor for the movement of populations from India to East/Southeast Asia.  相似文献   

3.
Recent molecular phylogenetic studies indicate that the rafting Indian plate harboured several isolated vertebrate lineages between ca. 130 and 56 Myr ago that dispersed and diversified 'out of India' following accretion with Eurasia. A single family of the amphibian order Gymnophiona, the Ichthyophiidae, presently occurs on the Indian plate and across much of South East Asia. Ichthyophiid phylogeny is investigated in order to test competing out of India and out of South East Asia hypotheses for their distribution. Partial sequences of mitochondrial 12S and 16S rRNA and cytochrome b genes for 20 ichthyophiids and proximate outgroups were assembled. Parsimony, maximum-likelihood and distance analyses all recover optimum trees in which uraeotyphlids plus Ichthyophis cf. malabarensis are the sister taxa to all other Ichthyophis, among which the South East Asian taxa are monophyletic. Tree topology and branch lengths indicate that the Indian lineages are more basal and older, and thus are more consistent with the hypothesis that ichthyophiids dispersed from the Indian subcontinent into South East Asia. The estimated relationships also support monophyly of Sri Lankan Ichthyophis, and non-monophyly of striped and unstriped Ichthyophis species groups. Mitochondrial DNA sequences provide evidence that should assist current problematic areas of caecilian taxonomy.  相似文献   

4.
The northeast Indian passageway connecting the Indian subcontinent to East/Southeast Asia is thought to have been a major corridor for human migrations. Because it is also an important linguistic contact zone, it is predicted that northeast India has witnessed extensive population interactions, thus, leading to high genetic diversity within groups and heterogeneity among groups. To test this prediction, we analyzed 14 biallelic and five short tandem-repeat Y-chromosome markers and hypervariable region 1 mtDNA sequence variation in 192 northeast Indians. We find that both northeast Indian Y chromosomes and mtDNAs consistently show strikingly high homogeneity among groups and strong affinities to East Asian groups. We detect virtually no Y-chromosome and mtDNA admixture between northeast and other Indian groups. Northeast Indian groups are also characterized by a greatly reduced Y-chromosome diversity, which contrasts with extensive mtDNA diversity. This is best explained by a male founder effect during the colonization of northeast India that is estimated to have occurred within the past 4,000 years. Thus, contrary to the prediction, these results provide strong evidence for a genetic discontinuity between northeast Indian groups and other Indian groups. We, therefore, conclude that the northeast Indian passage way acted as a geographic barrier rather than as a corridor for human migrations between the Indian subcontinent and East/Southeast Asia, at least within the past millennia and possibly for several tens of thousand years, as suggested by the overall distinctiveness of the Indian and East Asian Y chromosome and mtDNA gene pools.  相似文献   

5.
Genetic studies and differing population trends support the separation of Steller sea lions (Eumetopias jubatus) into a western distinct population segment (WDPS) and an eastern DPS (EDPS) with the dividing line between populations at 144° W. Despite little exchange for thousands of years, the gap between the breeding ranges narrowed during the past 15–30 years with the formation of new rookeries near the DPS boundary. We analyzed >22,000 sightings of 4,172 sea lions branded as pups in each DPS from 2000–2010 to estimate probabilities of a sea lion born in one DPS being seen within the range of the other DPS (either ‘West’ or ‘East’). Males from both populations regularly traveled across the DPS boundary; probabilities were highest at ages 2–5 and for males born in Prince William Sound and southern Southeast Alaska. The probability of WDPS females being in the East at age 5 was 0.067 but 0 for EDPS females which rarely traveled to the West. Prince William Sound-born females had high probabilities of being in the East during breeding and non-breeding seasons. We present strong evidence that WDPS females have permanently emigrated to the East, reproducing at two ‘mixing zone’ rookeries. We documented breeding bulls that traveled >6,500 km round trip from their natal rookery in southern Alaska to the northern Bering Sea and central Aleutian Islands and back within one year. WDPS animals began moving East in the 1990s, following steep population declines in the central Gulf of Alaska. Results of our study, and others documenting high survival and rapid population growth in northern Southeast Alaska suggest that conditions in this mixing zone region have been optimal for sea lions. It is unclear whether eastward movement across the DPS boundary is due to less-optimal conditions in the West or a reflection of favorable conditions in the East.  相似文献   

6.
Episodic marine incursion has been a major driving force in the formation of present-day diversity. Marine incursion is considered to be one of the most productive ‘species pumps’ particularly because of its division and coalescence effects. Marine incursion events and their impacts on diversity are well documented from South America, North America and Africa; however, their history and impacts in continental East Asia largely remain unknown. Here, we propose a marine incursion scenario occurring in East Asia during the Miocene epoch, 10–17 Ma. Our molecular phylogenetic analysis of Platorchestia talitrids revealed that continental terrestrial populations (Platorchestia japonica) form a monophyletic group that is the sister group to the Northwest Pacific coastal species Platorchestia pacifica. The divergence time between the two species coincides with Middle Miocene high global sea levels. We suggest that the inland form arose as a consequence of a marine incursion event. This is the first solid case documenting the impact of marine incursion on extant biodiversity in continental East Asia. We believe that such incursion event has had major impacts on other organisms and has played an important role in the formation of biodiversity patterns in the region.  相似文献   

7.
Previous studies of meta-analyses found significantly positive correlations between primate species richness and rainfall for Africa, Madagascar and the Neotropics, with the exception of Asia, leaving the open question whether that anomaly is the result of sampling bias, biogeography, or some other factor. This study re-examines the question using modelled data, with primate species richness data from the Southeast Asian Mammals Databank and rainfall data from the Climatic Research Unit. Data processing with Geographical Information Systems resulted in 390 sample points. Reduced major axis and ordinary least squares regressions were employed to examine the relationship for six regions, including the whole study area of Southeast Asia, and the subareas of Huxley West, Huxley East, Mainland Southeast Asia, Borneo, and Sumatra. The results showed a significant positive relationship between primate species richness and mean annual rainfall for Southeast Asia (r = 0.26, P<0.001). Comparing the results for the large islands and Mainland Southeast Asia showed that Sumatra had the highest correlation (r = 0.58; P<0.05). After controlling for the major biogeographic effect associated with Huxley’s Line, our results showed that primate species richness is positively associated with mean annual rainfall in Southeast Asia. Our findings contrast to prior studies of meta-analyses that showed no relationship between rainfall and primate species richness in Asia, and thereby bring Asia into agreement with results showing significant positive correlations between rainfall and primate species richness everywhere else in the world. The inference is that previous anomalous results for Asia were result of sampling bias in the meta-analysis.  相似文献   

8.

Objectives

To quantify and compare the association between the World Health Organizations’ Asian-specific trigger points for public health action [‘increased risk’: body mass index (BMI) ≥23 kg/m2, and; ‘high risk’: BMI ≥27.5 kg/m2] with self-reported cardiovascular-related conditions in Asian-Canadian sub-groups.

Methods

Six cycles of the Canadian Community Health Survey (2001–2009) were pooled to examine BMI and health in Asian sub-groups (South Asians, Chinese, Filipino, Southeast Asians, Arabs, West Asians, Japanese and Korean; N = 18 794 participants, ages 18–64 y). Multivariable logistic regression, adjusting for demographic, lifestyle characteristics and acculturation measures, was used to estimate the odds of cardiovascular-related health (high blood pressure, heart disease, diabetes, ‘at least one cardiometabolic condition’) outcomes across all eight Asian sub-groups.

Results

Compared to South Asians (OR = 1.00), Filipinos had higher odds of having ‘at least one cardiometabolic condition’ (OR = 1.29, 95% CI: 1.04–1.62), whereas Chinese (0.63, 0.474–0.9) and Arab-Canadians had lower odds (0.38, 0.28–0.51). In ethnic-specific analyses (with ‘acceptable’ risk weight as the referent), ‘increased’ and ‘high’ risk weight categories were the most highly associated with ‘at least one cardiometabolic condition’ in Chinese (‘increased’: 3.6, 2.34–5.63; ‘high’: 8.9, 3.6–22.01). Compared to normal weight South Asians, being in the ‘high’ risk weight category in all but the Southeast Asian, Arab, and Japanese ethnic groups was associated with approximately 3-times the likelihood of having ‘at least one cardiometabolic condition’.

Conclusion

Differences in the association between obesity and cardiometabolic health risks were seen among Asian sub-groups in Canada. The use of WHO’s lowered Asian-specific BMI cut-offs identified obesity-related risks in South Asian, Filipino and Chinese sub-groups that would have been masked by traditional BMI categories. These findings have implications for public health messaging, especially for ethnic groups at higher odds of obesity-related health risks.  相似文献   

9.
Abstract: A skull and mandible of the new species Dicerorhinus gwebinensis sp. nov. of Rhinocerotidae (Mammalia, Perissodactyla) is described. The material is collected from the upper part of the Irrawaddy sediments (Plio‐Pleistocene) in central Myanmar. D. gwebinensis sp. nov. is morphologically more similar to the extant species D. sumatrensis (Sumatran rhinoceros) than to other species of the genus but differs from D. sumatrensis in having the comparatively shorter nasal, the more concave dorsal profile of the skull, the more elevated occiput and presence of molar crista in M3/. This is the first discovery of Dicerorhinus in the upper Miocene to lower Pleistocene of the Indian subcontinent and Mainland Southeast Asia, and fills the chronological and geographical gap of this lineage in Asia. The Dicerorhinus clade probably migrated into Southeast Asia from East Asia by the Pliocene or early Pleistocene. This hypothesis is supported by the scarcity or absence of this clade in the Neogene mammalian fauna of the Indian Subcontinent.  相似文献   

10.

Background and Aims

The subgenus Ceratotropis in the genus Vigna is widely distributed from the Himalayan highlands to South, Southeast and East Asia. However, the interspecific and geographical relationships of its members are poorly understood. This study investigates the phylogeny and biogeography of the subgenus Ceratotropis using chloroplast DNA sequence data.

Methods

Sequence data from four intergenic spacer regions (petA-psbJ, psbD-trnT, trnT-trnE and trnT-trnL) of chloroplast DNA, alone and in combination, were analysed using Bayesian and parsimony methods. Divergence times for major clades were estimated with penalized likelihood. Character evolution was examined by means of parsimony optimization and MacClade.

Key Results

Parsimony and Bayesian phylogenetic analyses on the combined data demonstrated well-resolved species relationships in which 18 Vigna species were divided into two major geographical clades: the East Asia–Southeast Asian clade and the Indian subcontinent clade. Within these two clades, three well-supported eco-geographical groups, temperate and subtropical (the East Asia–Southeast Asian clade) and tropical (the Indian subcontinent clade), are recognized. The temperate group consists of V. minima, V. nepalensis and V. angularis. The subtropical group comprises the V. nakashimaeV. riukiuensisV. minima subgroup and the V. hirtellaV. exilisV. umbellata subgroup. The tropical group contains two subgroups: the V. trinerviaV. reflexo-pilosaV. trilobata subgroup and the V. mungoV. grandiflora subgroup. An evolutionary rate analysis estimated the divergence time between the East Asia–Southeast Asia clade and the Indian subcontinent clade as 3·62 ± 0·3 million years, and that between the temperate and subtropical groups as 2·0 ± 0·2 million years.

Conclusions

The findings provide an improved understanding of the interspecific relationships, and ecological and geographical phylogenetic structure of the subgenus Ceratotropis. The quaternary diversification of the subgenus Ceratotropis implicates its geographical dispersal in the south-eastern part of Asia involving adaptation to climatic condition after the collision of the Indian subcontinent with the Asian plate. The phylogenetic results indicate that the epigeal germination is plesiomorphic, and the germination type evolved independently multiple times in this subgenus, implying its limited taxonomic utility.  相似文献   

11.

Background

The family Phyllanthaceae has a predominantly pantropical distribution. Of its several genera, Bridelia Willd. is of a special interest because it has disjunct equally distributed species in Africa and tropical Asia i.e. 18–20 species in Africa-Madagascar (all endemic) and 18 species in tropical Asia (some shared with Australia). On the basis of molecular phylogenetic study on Bridelia, it has been suggested that the genus evolved in Southeast Asia around 33±5 Ma, while speciation and migration to other parts of the world occurred at 10±2 Ma. Fossil records of Bridelia are equally important to support the molecular phylogenetic studies and plate tectonic models.

Results

We describe a new fossil leaf of Bridelia from the late Oligocene (Chattian, 28.4–23 Ma) sediments of Assam, India. The detailed venation pattern of the fossil suggests its affinities with the extant B. ovata, B. retusa and B. stipularis. Based on the present fossil evidence and the known fossil records of Bridelia from the Tertiary sediments of Nepal and India, we infer that the genus evolved in India during the late Oligocene (Chattian, 28.4–23 Ma) and speciation occurred during the Miocene. The stem lineage of the genus migrated to Africa via “Iranian route” and again speciosed in Africa-Madagascar during the late Neogene resulting in the emergence of African endemic clades. Similarly, the genus also migrated to Southeast Asia via Myanmar after the complete suturing of Indian and Eurasian plates. The emergence and speciation of the genus in Asia and Africa is the result of climate change during the Cenozoic.

Conclusions

On the basis of present and known fossil records of Bridelia, we have concluded that the genus evolved during the late Oligocene in northeast India. During the Neogene, the genus diversified and migrated to Southeast Asia via Myanmar and Africa via “Iranian Route”.  相似文献   

12.
We examined the sequence variation of mitochondrial DNA control region and cytochrome b gene of the house mouse (Mus musculus sensu lato) drawn from ca. 200 localities, with 286 new samples drawn primarily from previously unsampled portions of their Eurasian distribution and with the objective of further clarifying evolutionary episodes of this species before and after the onset of human-mediated long-distance dispersals. Phylogenetic analysis of the expanded data detected five equally distinct clades, with geographic ranges of northern Eurasia (musculus, MUS), India and Southeast Asia (castaneus, CAS), Nepal (unspecified, NEP), western Europe (domesticus, DOM) and Yemen (gentilulus). Our results confirm previous suggestions of Southwestern Asia as the likely place of origin of M. musculus and the region of Iran, Afghanistan, Pakistan, and northern India, specifically as the ancestral homeland of CAS. The divergence of the subspecies lineages and of internal sublineage differentiation within CAS were estimated to be 0.37–0.47 and 0.14–0.23 million years ago (mya), respectively, assuming a split of M. musculus and Mus spretus at 1.7 mya. Of the four CAS sublineages detected, only one extends to eastern parts of India, Southeast Asia, Indonesia, Philippines, South China, Northeast China, Primorye, Sakhalin and Japan, implying a dramatic range expansion of CAS out of its homeland during an evolutionary short time, perhaps associated with the spread of agricultural practices. Multiple and non-coincident eastward dispersal events of MUS sublineages to distant geographic areas, such as northern China, Russia and Korea, are inferred, with the possibility of several different routes.  相似文献   

13.
14.
The Giant African Land Snail, Achatina ( = Lissachatina) fulica Bowdich, 1822, is a tropical crop pest species with a widespread distribution across East Africa, the Indian subcontinent, Southeast Asia, the Pacific, the Caribbean, and North and South America. Its current distribution is attributed primarily to the introduction of the snail to new areas by Man within the last 200 years. This study determined the extent of genetic diversity in global A. fulica populations using the mitochondrial 16S ribosomal RNA gene. A total of 560 individuals were evaluated from 39 global populations obtained from 26 territories. Results reveal 18 distinct A. fulica haplotypes; 14 are found in East Africa and the Indian Ocean islands, but only two haplotypes from the Indian Ocean islands emerged from this region, the C haplotype, now distributed across the tropics, and the D haplotype in Ecuador and Bolivia. Haplotype E from the Philippines, F from New Caledonia and Barbados, O from India and Q from Ecuador are variants of the emergent C haplotype. For the non-native populations, the lack of genetic variation points to founder effects due to the lack of multiple introductions from the native range. Our current data could only point with certainty to the Indian Ocean islands as the earliest known common source of A. fulica across the globe, which necessitates further sampling in East Africa to determine the source populations of the emergent haplotypes.  相似文献   

15.

Background  

The faunal and floral relationship of northward-drifting India with its neighboring continents is of general biogeographic interest as an important driver of regional biodiversity. However, direct biogeographic connectivity of India and Southeast Asia during the Cenozoic remains largely unexplored. We investigate timing, direction and mechanisms of faunal exchange between India and Southeast Asia, based on a molecular phylogeny, molecular clock-derived time estimates and biogeographic reconstructions of the Asian freshwater crab family Gecarcinucidae.  相似文献   

16.
17.
The continental distributions of freshwater fishes in the family Notopteridae (Osteoglossomorpha) across Africa, India, and Southeast Asia constitute a long standing and enigmatic problem of freshwater biogeography. The migrational pathway of the Asian notopterids has been discussed in light of two competing schemes: the first posits recent transcontinental dispersal while the second relies on distributions being shaped by ancient vicariance associated with plate-tectonic events. In this study, we determined complete mitochondrial DNA sequences from 10 osteoglossomorph fishes to estimate phylogenetic relationships using partitioned Bayesian and maximum likelihood methods and divergence dates of the family Notopteridae with a partitioned Bayesian approach. We used six species representing the major lineages of the Notopteridae and seven species from the remaining osteoglossomorph families. Fourteen more-derived teleosts, nine basal actinopterygians, two coelacanths, and one shark were used as outgroups. Phylogenetic analyses indicated that the African and Asian notopterids formed a sister group to each other and that these notopterids were a sister to a clade comprising two African families (Mormyridae and Gymnarchidae). Estimated divergence time between the African and Asian notopterids dated back to the early Cretaceous when India–Madagascar separated from the African part of Gondwanaland. Thus, estimated time of divergence based on the molecular evidence is at odds with the recent dispersal model. It can be reconciled with the geological and paleontological evidence to support the vicariance model in which the Asian notopterids diverged from the African notopterids in Gondwanaland and migrated into Eurasia on the Indian subcontinent from the Cretaceous to the Tertiary. However, we could not exclude an alternative explanation that the African and Asian notopterids diverged in Pangea before its complete separation into Laurasia and Gondwanaland, to which these two lineages were later confined, respectively.  相似文献   

18.
The Asian Tree Toad genus Pedostibes, as currently understood, exhibits a conspicuously disjunct distribution, posing several immediate questions relating to the biogeography and taxonomy of this poorly known group. The type species, P. tuberculosus and P. kempi, are known only from India, whereas P. hosii, P. rugosus, and P. everetti are restricted to Southeast Asia. Several studies have shown that these allopatric groups are polyphyletic, with the Indian Pedostibes embedded within a primarily South Asian clade of toads, containing the genera Adenomus, Xanthophryne, and Duttaphrynus. Southeast Asian Pedostibes on the other hand, are nested within a Southeast Asian clade, which is the sister lineage to the Southeast Asian river toad genus Phrynoidis. We demonstrate that Indian and Southeast Asian Pedostibes are not only allopatric and polyphyletic, but also exhibit significant differences in morphology and reproductive mode, indicating that the Southeast Asian species’ are not congeneric with the true Pedostibes of India. As a taxonomic solution, we describe a new genus, Rentapia gen. nov. to accommodate the Southeast Asian species.  相似文献   

19.
Since 1998 there have been significant changes in the global distribution of bluetongue virus (BTV). Ten previously exotic BTV serotypes have been detected in Europe, causing severe disease outbreaks in naïve ruminant populations. Previously exotic BTV serotypes were also identified in the USA, Israel, Australia and India. BTV is transmitted by biting midges (Culicoides spp.) and changes in the distribution of vector species, climate change, increased international travel and trade are thought to have contributed to these events. Thirteen BTV serotypes have been isolated in India since first reports of the disease in the country during 1964. Efficient methods for preparation of viral dsRNA and cDNA synthesis, have facilitated full-genome sequencing of BTV strains from the region. These studies introduce a new approach for BTV characterization, based on full-genome sequencing and phylogenetic analyses, facilitating the identification of BTV serotype, topotype and reassortant strains. Phylogenetic analyses show that most of the equivalent genome-segments of Indian BTV strains are closely related, clustering within a major eastern BTV ‘topotype’. However, genome-segment 5 (Seg-5) encoding NS1, from multiple post 1982 Indian isolates, originated from a western BTV topotype. All ten genome-segments of BTV-2 isolates (IND2003/01, IND2003/02 and IND2003/03) are closely related (>99% identity) to a South African BTV-2 vaccine-strain (western topotype). Similarly BTV-10 isolates (IND2003/06; IND2005/04) show >99% identity in all genome segments, to the prototype BTV-10 (CA-8) strain from the USA. These data suggest repeated introductions of western BTV field and/or vaccine-strains into India, potentially linked to animal or vector-insect movements, or unauthorised use of ‘live’ South African or American BTV-vaccines in the country. The data presented will help improve nucleic acid based diagnostics for Indian serotypes/topotypes, as part of control strategies.  相似文献   

20.
Studies on the evolution of tropical taxa emphasize the role ofvicariance and the break-up of Gondwana in explaining modern distributions.Earlier studies on figs (Ficus spp.) support this view.In the current study,we used an expanded sample (208 spp.) and improved molecular dating techniques to reconstruct the phylogenetic and biogeographic history of Ficus.Consistent with previous studies,our biogeographic analysis indicated that the ancestor of Ficus was present in Gondwana.However,a relaxed clock analysis relying on uncorrelated rates in BEAST suggested that the Neotropical section Pharmacosycea split-off in South America 86.67 Mya,and that other Ficus lineage ancestors originated in India.Most of the basal lineages appeared to have diverged following KT extinction,then rapidly diversified after India collided with continental Asia.The Afrotropical species most likely evolved initially in the Indian subcontinent then dispersed to Africa,either in the late Cretaceous of Madagascar or even later,following the Eocene collision of India with Asia.The Neotropical section Americana,either islandhopped to South America or took a northern route to the Americas through Europe prior to the terminal Eocene global cooling event.Ficus may have arrived in eastern Malesia following the collision of India with Asia,then widely dispersed thereafter.Given the wide ranges in our date estimates,several other scenarios are possible.However,contrary to earlier reports,our analyses suggest that vicariance played a relatively minor role compared with ecological opportunity and dispersal in the diversification of genus Ficus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号