首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant cancer affecting oral cavity. Recent studies have demonstrated that Ubiquitin-specific protease 7 (USP7) was upregulated in several types of cancers. USP7 expression was associated with various proto-oncogenes and tumor suppressor genes. However, USP7 expression level and its functional role in OSCC is unclear. In the current study, we showed that USP7 expression in OSCC tissues was generally upregulated compared to normal adjacent tissues by using IHC. Furthermore, statistical analysis uncovered that USP7 expression was positively correlated with Ki-67, MMP2, VEGF in OSCC tissues. Importantly, high USP7 expression was significantly correlated with lymph node metastasis and histological differentiation in OSCC patients. So, our hypothesis is that USP7 plays a tumor-promoting role in OSCC. Knocking down of USP7 in tumor cells not only suppressed HSC3 cells proliferation, migration and invasion, but also promoted cell apoptosis. Moreover, USP7 siRNA blocked the activation of Akt/ERK signaling pathway. In conclusion, data presented here suggests that USP7 promotes the progression of OSCC. USP7 may be used as a new therapeutic target for OSCC diagnosis and treatment.Keywords: Oral Squamous Cell Carcinoma, USP7, siRNA, proliferation, invasion  相似文献   

2.
Monocarboxylate transporter 4 (MCT4) is a cell membrane transporter of lactate. Recent studies have shown that MCT4 is over-expressed in various cancers; however, its role in cancer maintenance and aggressiveness has not been fully demonstrated. This study investigated the role of MCT4 in oral squamous cell carcinoma (OSCC), and found that it is highly expressed in OSCC patients by using immunohistochemistry. Moreover, this over-expression of MCT4 was closely associated with tumor size, TNM classification, lymphatic metastasis, distant metastasis and tumor recurrence, and also poor prognosis. To further study mechanisms of MCT4 in vitro, we used small-interfering RNA to silence its expression in OSCC cell lines. The results showed that knock-down of MCT4 decreased cell proliferation, migration, and invasion. The inhibition of proliferation was associated with down-regulation of p-AKT and p-ERK1/2, while decreased cell migration and invasion may be caused by down-regulation of integrin β4-SRC-FAK and MEK-ERK signaling. Together, these findings provide new insight into the critical role of MCT4 in cell proliferation and metastasis in OSCC.  相似文献   

3.
microRNAs (miRNAs) are small non-coding RNAs that have been suggested to play an essential role in tumorigenesis. Reduced expression of miR-338 has been reported in several types of cancers; however, the role of miR-338 in oral squamous cell carcinoma (OSCC) has not been elucidated. In this study, we demonstrated that miR-338 was dramatically downregulated in OSCC tissues and cell lines. Overexpression of miR-338 significantly inhibited proliferation, colony formation, migration, and invasion of OSCC cells. In addition, neuropilin1 (NRP1) was identified as a target of miR-338 in OSCC cells and inversely correlated with miR-338 in OSCC tissues. Furthermore, restoration of NRP1 attenuated the tumor-suppressive effects of miR-338. Taken together, miR-338 might inhibit growth and metastasis of OSCC cells by targeting NRP1.  相似文献   

4.

Background

Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancy. Semaphorin 3F (SEMA3F) is highly conserved but present at a lower level in various cancers than in healthy tissues. While it has been reported that SEMA3F is involved in cancer cell proliferation, migration and invasion, its function in OSCC remains unknown.

Methods

The expression of SEMA3F in OSCC tissues and OSCC-derived cells was analyzed using qRT-PCR and western blotting. Using SAS and HSC2 cells, we also monitored the effect of SEMA3F on OSCC cell proliferation, migration and invasion using MTT, colony formation and transwell assays. The function of SEMA3F in OSCC tumor formation was also assessed in vivo.

Results

SEMA3F was significantly downregulated in OSCC tissues and OSCC-derived cells. SEMA3F shows growth inhibitory activity in SAS and HSC2 cells and may act as a tumor suppressor. It can inhibit the migration and invasion potential of OSCC cells. Our results also demonstrate that SEMA3F can suppress the growth of OSCC cells in vivo.

Conclusions

This study revealed that SEMA3F plays a role as a tumor suppressor in OSCC cell proliferation, migration and invasion. Our finding provides new insight into the progression of OSCC. Therapeutically, SEMA3F has some potential as a target for OSCC treatment, given sufficient future research.
  相似文献   

5.
H Wang  Q Wu  Z Liu  X Luo  Y Fan  Y Liu  Y Zhang  S Hua  Q Fu  M Zhao  Y Chen  W Fang  X Lv 《Cell death & disease》2014,5(4):e1155
It is largely recognized that fibroblast activation protein (FAP) is expressed in cancer-associated fibroblasts (CAFs) of many human carcinomas. Furthermore, FAP was recently also reported to be expressed in carcinoma cells of the breast, stomach, pancreatic ductal adenocarcinoma, colorectum, and uterine cervix. The carcinoma cell expression pattern of FAP has been described in several types of cancers, but the role of FAP in oral squamous cell carcinoma (OSCC) is unknown. The role of endogenous FAP in epithelium-derived tumors and molecular mechanisms has also not been reported. In this study, FAP was found to be expressed in carcinoma cells of OSCC and was upregulated in OSCC tissue samples compared with benign tissue samples using immunohistochemistry. In addition, its expression level was closely correlated with overall survival of patients with OSCC. Silencing FAP inhibited the growth and metastasis of OSCC cells in vitro and in vivo. Mechanistically, knockdown of FAP inactivated PTEN/PI3K/AKT and Ras-ERK and its downstream signaling regulating proliferation, migration, and invasion in OSCC cells, as the inhibitory effects of FAP on the proliferation and metastasis could be rescued by PTEN silencing. Our study suggests that FAP acts as an oncogene and may be a potential therapeutic target for patients with OSCC.  相似文献   

6.
7.
Oral squamous cell carcinoma (OSCC) is a pathological type of oral cancer, which accounts for over 90% of oral cancers. It has been widely shown that circRNA is involved in the regulation of multiple malignant oral diseases including OSCC. However, the mechanism underlying how circRNA regulates OSCC is still not clearly elucidated. In this article, we report circFOXO3 promotes tumor growth and invasion of OSCC by targeting miR‐214 which specifically degrades the lysine demethylase 2A (KDM2A). CircRNA sequencing was conducted in OSCC tumor and tumor‐side tissues, and the expression of circFOXO3 is found to be markedly increased in tumor tissues. CircFOXO3 is also highly expressed in several OSCC cell lines compared with human oral keratinocytes. Transwell assay and colony formation showed that knockdown of circFOXO3 prevents the invasion and proliferation of oral cancer cells. Via bioinformatic research, miR‐214 was found to be the target of circFOXO3 and correlate well with circFOXO3 both in vitro and in vivo. KDM2A was then validated by database analysis and luciferase assay to be the direct target of miR‐214. KDM2A helps to promote tumor invasiveness and proliferation of OSCC. Collectively, our results proved that circFOXO3 sponges miR‐214 to up‐regulate the expression of KDM2A, thus promotes tumor progression in OSCC.  相似文献   

8.
9.
Oral cancers constitute approximately 2% of all cancers, with the most common histological type being oral squamous cell carcinoma (OSCC), representing 90% of oral cancers. Although diagnostic technologies and therapeutic techniques have progressed, the survival rate of patients with OSCC is still 60%, whereas the incidence rate has increased. Podocalyxin (PODXL) is a highly glycosylated type I transmembrane protein that is detected in normal tissues such as heart, breast, and pancreas as well as in many cancers, including lung, renal, breast, colorectal, and oral cancers. This glycoprotein is associated with the progression, metastasis, and poor outcomes of oral cancers. PODXL overexpression was strongly detected using our previously established anti-PODXL monoclonal antibody (mAb), PcMab-47, and its mouse IgG2a-type, 47-mG2a. In previous studies, we also generated PODXL-knock out (PODXL-KO) cell lines using SAS OSCC cell lines, in order to investigate the function of PODXL in the proliferation of oral cancer cells. The growth of SAS/PODXL-KO cell lines was observed to be lower than that of parental SAS cells. For this study, PODXL-KO OSCC cell lines were generated using HSC-2 cells, and the role of PODXL in the growth of OSCC cell lines in vitro was assessed. Decreased growth was observed for HSC-2/PODXL-KO cells compared with HSC-2 parental cells. The influence of PODXL on tumor growth of OSCC was also investigated in vivo, and both the tumor volume and the tumor weight were observed to be significantly lower for HSC-2/PODXL-KO than that for HSC-2 parental cells. These results, taken together, indicate that PODXL plays an important role in tumor growth, both in vitro and in vivo.  相似文献   

10.

Background

The epithelial-to-mesenchymal transition (EMT) is a key process in carcinogenesis, invasion, and metastasis of oral squamous cell carcinoma (OSCC). In our previous studies, we found that neuropilin-1 (NRP1) is overexpressed in tongue squamous cell carcinoma and that this overexpression is associated with cell migration and invasion. Nuclear factor-kappa B (NF-κB) plays an essential role both in the induction and the maintenance of EMT and tumor metastasis. Therefore, we hypothesized that NRP1 induces EMT, and that NRP1-induced migration and invasion may be an important mechanism for promoting invasion and metastasis of OSCC through NF-κB activation.

Methods/Results

The variations in gene and protein expression and the changes in the biological behavior of OSCC cell lines transfected with a vector encoding NRP1, or the corresponding vector control, were evaluated. NRP1 overexpression promoted EMT and was associated with enhanced invasive and metastatic properties. Furthermore, the induction of EMT promoted the acquisition of some cancer stem cell (CSC)-like characteristics in OSCC cells. We addressed whether selective inhibition of NF-κB suppresses the NRP1-mediated EMT by treating cells with pyrrolidinedithiocarbamate ammonium (PDTC), an inhibitor of NF-κB. Immunohistochemical analysis of NRP1 in OSCC tissue samples further supported a key mediator role for NRP1 in tumor progression, lymph node metastasis, and indicated that NRP1 is a predictor for poor prognosis in OSCC patients.

Conclusion

Our results indicate that NRP1 may regulate the EMT process in OSCC cell lines through NF-κB activation, and that higher NRP1 expression levels are associated with lymph node metastasis and poor prognosis in OSCC patients. Further investigation of the role of NRP1 in tumorigenesis may help identify novel targets for the prevention and therapy of oral cancers.  相似文献   

11.
While atypical expression of special AT-rich sequence-binding protein 2 (SATB2) has been approved associated with tumor progression, metastasis and unfavourable prognosis in various carcinomas. However, in oral squamous cell carcinoma (OSCC), both the expressive state and associated functions of SATB2's are still undefined. Here we show that, in clinical samples from a retrospective cohort of 58 OSCC patients, high expression of SATB2 is associated with poor prognosis of OSCC patients. In this study, we investigated SATB2 is highly expressed in OSCC tissues and cell lines, which can promote OSCC cells' proliferation, migration, invasion and tumor growth. According to sequencing results based on previous literature, we identified NOX4 is a bona fide downstream target of SATB2, when it was knockdown, OSCC's proliferation can be partially suppressed. Furthermore, NOX4 knockdown inhibits tumorigenicity, which can be rescued partially by ectopic expression of SATB2 in HNSCC cell line, and vice versa. Collectively, our findings not only indicate overexpression of SATB2 triggers the proliferative, migratory and invasive mechanisms which are important in the malignant phenotype of OSCC, but also identify NOX4 as the downstream gene for SATB2. These findings indicate that SATB2 may play a key role in OSCC tumorigenicity and may be a future target for the development of new therapeutic regimens.  相似文献   

12.
13.
Estrogen-related receptor α (ERRα) belongs to the superfamily of nuclear orphan receptors. However, the role of ERRα in bladder cancer remains unknown. This study examined the expression of ERRα in bladder cancer tissues and explored the molecular mechanisms of ERRα in bladder cancer progression. The expression of ERRα in bladder cancer tissues from 61 patients was determined by immunohistochemistry. We performed quantitative real-time polymerase chain reaction assay to detect the gene expression levels and carried out Western blot assay to measure protein levels. In vitro functional assays, including colony formation, Cell Counting Kit-8, Transwell invasion, and migration assays, were performed to detect bladder cancer cell growth, proliferation, invasion, and migration, respectively. Flow cytometry was used to determine the cell apoptotic rate of bladder cancer cells. Among the 61 detected bladder cancer tissues, 39 bladder cancer tissues showed positive ERRα immunoreactivity. Higher ERRα immunoreactivity score was significantly associated with TNM stage, tumor grade, distant metastasis, and poor survival in patients with bladder cancer. Univariate and multivariate analyses showed that ERRα immunoreactivity was an independent prognostic factor for overall survival in patients with bladder cancer. ERRα was found to be upregulated in bladder cancer cell lines, and knockdown of ERRα suppressed bladder cancer cell growth, proliferation, invasion, and migration; promoted bladder cancer cell apoptosis; and inhibited the epithelial-mesenchymal transition of bladder cancer cells. On the other hand, bladder cancer cell proliferation, invasion, and migration were significantly enhanced after cells were transfected with an ERRα-overexpressing vector. In vivo tumor growth and metastasis assays showed that ERRα knockdown resulted in remarkable inhibition of tumor growth and tumor metastasis in nude mice. Collectively, our results suggest that the enhanced expression of ERRα may play a key role in the development and progression of bladder cancer and ERRα may serve as an important prognostic factor for bladder cancer.  相似文献   

14.
15.
16.
Autophagy is an evolutionally conserved catabolic process that degrades cells to maintain homeostasis. Cisplatin-activated autophagy promotes the expression of circ-PKD2, which plays a role as a tumor suppressor gene in the proliferation, migration, and invasion in oral squamous cell carcinoma (OSCC). However, the role of circ-PKD2 in regulating the sensitivity of OSCC patients to cisplatin remains to be elucidated. Overexpression of circ-PKD2 increased the formation of autophagosomes in OSCC cells and activation of proteins, such as LC3 II/I. Its activation effect on autophagy was, however, alleviated by 3-MA. Bioinformatics analyses and double luciferases reporter assays conducted in this study confirmed the existence of targeted relationships between circ-PKD2 and miR-646 and miR-646 and Atg13. Functional experiments further revealed that miR-646 reversed the autophagy and apoptosis effects of circ-PKD2 in OSCC cells treated with cisplatin. In addition, circ-PKD2 promoted the expression of ATG13 by adsorption of miR-646. Its interference with Atg13 alleviated the activation effects of circ-PKD2 on autophagy and apoptosis of miR-646. Notably, the in vivo animal experiments also confirmed that circ-PKD2 inhibited tumor proliferation and activated autophagy in OSCC cells. This study provides a theoretical basis for using circ-PKD2 as a target to regulate the sensitivity of OSCC patients to cisplatin, thus increasing its chemotherapeutic effects.Subject terms: Diagnostic markers, Oral cancer  相似文献   

17.
Oral squamous cell carcinoma (OSCC) is an oral and maxillofacial malignancy that exhibits high incidence worldwide. In diverse human cancers, the long non‐coding RNA (lncRNA) highly up‐regulated in liver cancer (HULC) is aberrantly expressed, but how HULC affects OSCC development and progression has remained mostly unknown. We report that HULC was abnormally up‐regulated in oral cancer tissues and OSCC cell lines, and that suppression of HULC expression in OSCC cells not only inhibited the proliferation, drug tolerance, migration and invasion of the cancer cells, but also increased their apoptosis rate. Notably, in a mouse xenograft model, HULC depletion reduced tumorigenicity and inhibited the epithelial‐to‐mesenchymal transition process. Collectively, our findings reveal a crucial role of the lncRNA HULC in regulating oral cancer carcinogenesis and tumour progression, and thus suggest that HULC could serve as a novel therapeutic target for OSCC.  相似文献   

18.
Deregulated expression of activin A is reported in several tumors, but its biological functions in oral squamous cell carcinoma (OSCC) are unknown. Here, we investigate whether activin A can play a causal role in OSCCs. Activin A expression was assessed by qPCR and immunohistochemistry in OSCC tissues. Low activin A-expressing cells were treated with recombinant activin A and assessed for apoptosis, proliferation, adhesion, migration, invasion and epithelial-mesenchymal transition (EMT). Those phenotypes were also evaluated in high activin A-expressing cells treated with follistatin (an activin A antagonist) or stably expressing shRNA targeting activin A. Transfections of microRNA mimics were performed to determine whether the overexpression of activin A is regulated by miR-143/miR-145 cluster. Activin A was overexpressed in OSCCs in comparison with normal oral mucosa, and high activin A levels were significantly associated with lymph node metastasis, tumor differentiation and poor survival. High activin A levels promoted multiple properties associated with malignant transformation, including decreased apoptosis and increased proliferation, migration, invasion and EMT. Both miR-143 and miR-145 were markedly downregulated in OSCC cell lines and in clinical specimens, and inversely correlated to activin A levels. Forced expression of miR-143 and miR-145 in OSCC cells significantly decreased the expression of activin A. Overexpression of activin A in OSCCs, which is controlled by downregulation of miR-143/miR-145 cluster, regulates apoptosis, proliferation and invasiveness, and it is clinically correlated with lymph node metastasis and poor survival.  相似文献   

19.
Exosomes are 30–100 nm-sized membranous vesicles, secreted from a variety of cell types into their surrounding extracellular space. Various exosome components including lipids, proteins, and nucleic acids are transferred to recipient cells and affect their function and activity. Numerous studies have showed that tumor cell-derived exosomes play important roles in tumor growth and progression. However, the effect of exosomes released from oral squamous cell carcinoma (OSCC) into the tumor microenvironment remains unclear. In the present study, we isolated exosomes from OSCC cells and investigated the influence of OSCC cell-derived exosomes on the tumor cell behavior associated with tumor development. We demonstrated that OSCC cell-derived exosomes were taken up by OSCC cells themselves and significantly promoted proliferation, migration, and invasion through the activation of the PI3K/Akt, MAPK/ERK, and JNK-1/2 pathways in vitro. These effects of OSCC cell-derived exosomes were obviously attenuated by treatment with PI3K, ERK-1/2, and JNK-1/2 pharmacological inhibitors. Furthermore, the growth rate of tumor xenografts implanted into nude mice was promoted by treatment with OSCC cell-derived exosomes. The uptake of exosomes by OSCC cells and subsequent tumor progression was abrogated in the presence of heparin. Taken together, these data suggest that OSCC cell-derived exosomes might be a novel therapeutic target and the use of heparin to inhibit the uptake of OSCC-derived exosomes by OSCC cells may be useful for treatment.  相似文献   

20.
PAPAS is a recently identified long noncoding RNA (lncRNA) with inhibitory effects on ribosomal RNA synthesis. We studied the role of PAPAS in oral squamous cell carcinoma (OSCC). In the present study we showed that plasma PAPAS and transforming growth factor β1 (TGF-β1) were both upregulated in patients with OSCC, and were positively correlated only in patients with OSCC. Plasma levels of PAPAS were not significantly affected by AJCC stages and upregulation of PAPAS distinguished stage I OSCC patients from healthy controls. High plasma levels of PAPAS were followed by low overall survival rate. PAPAS overexpression led to upregulation of TGF-β1 in OSCC cells, while TGF-β1 treatment failed to significantly affect PAPAS. PAPAS overexpression and exogenous TGF-β1 treatment led to promoted invasion and migration of OSCC cells. In addition, TGF-β inhibitor attenuated the effects of PAPAS overexpression. Therefore, lncRNA PAPAS may promote OSCC by upregulating TGF-β1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号