首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of d-glucono-1,5-lactone (3) with excess of acetic anhydride in anhydrous pyridine at room temperature afforded the tetra-acetate and 2,4,6-tri-O-acetyl-3-deoxy-d-erythro-hex-2-enono-1,5-lactone (1). On prolonged reaction or at 80°, 3-acetoxy-6-acetoxymethylpyran-2-one (5) was the unexpected main product. The mechanistic implications of the conversion of 15 are discussed.  相似文献   

2.
Treatment of d-glucono-1,5-lactone (3) with excess of acetic anhydride in anhydrous pyridine at room temperature afforded the tetra-acetate and 2,4,6-tri-O-acetyl-3-deoxy-d-erythro-hex-2-enono-1,5-lactone (1). On prolonged reaction or at 80°, 3-acetoxy-6-acetoxymethylpyran-2-one (5) was the unexpected main product. The mechanistic implications of the conversion of 15 are discussed.  相似文献   

3.
Benzoylation of L-rhamnono-1,5-lactone (1) with an excess of benzoyl chloride and pyridine for 16 h afforded 2,4-O-benzoyl-3,6-dideoxy-L-erythro-hex-2-enono-1,5-lactone (2). Catalytic hydrogenation of 2 was stereoselective and gave crystalline 2,4-di-O-benzoyl-3,6-dideoxy-L-arabino-hexono-1,5-lactone (3). Reduction of the lactone 3 with disiamylborane afforded 2,4-di-O-benzoyl-3,6-dideoxy-L-arabino-hexopyranose (4) which, on debenzoylation, gave 3,6-dideoxy-L-arabino-hexose (ascarylose) (7) in good overall yield. The sugar was identified as the corresponding alditol (ascarylitol) and by convertion into methyl 3,6-dideoxy-α-L-arabino-hexopyranoside (methyl ascaryloside, 6).  相似文献   

4.
Silver carbonate on Celite (the Fetizon reagent) was shown to be selective as an oxidizing agent, and convenient for the preparation of various aldonolactones. Whereas substituted aldoses having the 1-hydroxyl group free were readily converted into the corresponding lactones, partially protected 2-acetamido-2-deoxypyranoses having more than one free hydroxyl group were selectively oxidized at C-1. The oxidation was carrried out in boiling benzene or 1,4-dioxane. A series of partially protected 2-acetamido-2-deoxy-1,5-aldonolactones [2-acetamido-4,6-O-benzylidene-2-deoxy-D-mannono-1,5-lactone (13),2-acetamido-4,6-O-benzylidene-2-deoxy-D-glucono-1,5-lactone (15), 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-glucono-1,5-lactone (18), 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-mannono-1,5-lactone (20), 2-acetamido-2-deoxy-3,4-di-O-methyl-D-mannono-1,5-lactone (24), and 2-acetamido-2-deoxy-3,4-di-O-methyl-D-glucono-1,5-lactone (25)] was thus prepared; for these, the oxidation was accompanied by two side-reactions: (a) an elimination (dehydration) that gave the unsaturated lactones [2-acetamido-4,6-O-benzylidene-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (12), 2-acetamido-2,3-dideoxy-4,6-O-isopropylidene-D-erythro-hex-2-enono-1,5-lactone (17), and 2-acetamido-2,3-dideoxy-4-O-methyl-D-erythro-hex-2-enono-1,5-lactone (23)], and (b) partial gluco-to-manno epimerization occurring during the oxidation of 2-acetamido-4,6-O-benzylidene-2-deoxy-D-glucopyranose (14), 2-acetamido-2-deoxy-4,6-O-isopropylidene-D-glucopyranose (16), and 2-acetamido-2-deoxy-3,4-di-O-methyl-D-glucopyranose (22).The free unsaturated lactone, 2-acetamido-2,3-dideoxy-D-erythro-hex-2-enono-1,5-lactone (26), was obtained on hydrolysis of the isopropylidene group in lactone 17.  相似文献   

5.
Addition of chloroazide to 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-lyxo- (1) and -d-arabino-hex-1-enitol (2) under u.v. irradiation proceeds regio- and stereo-selectively yielding mainly O-acetyl derivatives of 2-azido-2-deoxy-d-galactopyranose and -d-glucopyranose, respectively. 3,4,6-Tri-O-acetyl-2-chloro-2-deoxy-α-d-galactopyranosyl azide and 3,4,6-tri-O-acetyl-2-azido-2-deoxy-α-d-talopyranose (from 1), and 1,3,4,6-tetra-O-acetyl-2-chloro-2-deoxy-α-d-glucopyranosyl azide and 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α-d-mannopyranose (from 2) are byproducts. 1,5-Anhydro-3,4,6-tri-O-benzyl-2-deoxy-d-lyxo- and -d-arabino-hex-1-enitol reacted more rapidly with chloroazide, to give, under irradiation, derivatives of 2-azido-2-deoxy-d-galactose and -d-glucose, respectively. However, reaction in the dark gave mainly O-benzyl derivatives of 2-chloro-2-deoxy-α-d-galacto- and -α-d-glucopyranosyl azide. The difference between the products obtained may depend on the existence of two parallel processes, one radical (under irradiation), and the other ionic (reaction in the dark).  相似文献   

6.
Some reactions, catalyzed by p-toluenesulfonic acid, of 2-acetamido-1,4-anhydro-2-deoxy-5,6-O-isopropylidene-d-arabino-hex-1-enitol (1), a furanoid 2-aminoglycal derivative, were examined. Reaction with methyl and with benzyl alcohol gave the corresponding furanoid 2,3-unsaturated glycosides (2 and3) in good yield. Similar reaction with water, followed by acetylation, gave 2-acetamido-1,4,6-tri-O-acetyl-2,3-dideoxy-d-ribo-hex-2-enopyranose, which was hydrogenated to 2-acetamido-1,4,6-tri-O-acetyl-2,3-dideoxy-d-ribo-hexopyranose (an N-acetyllividosamine derivative) and its arabino analog. Addition of a catalytic amount of p-toluenesulfonic acid to a solution of 1 in dry 1,4-dioxane afforded furanoid, (1→3)-disaccharides in high yield. Tosylation of 1 to yield a furan derivative was, however, unsuccessful. Hydrogenation of methyl 2-acetamido-2,3-dideoxy-5,6-O-isopropylidene-d-erythro-hex-2-enofuranoside (2) was examined by use of palladium-on-carbon, as well as platinum oxide, as the catalyst  相似文献   

7.
1,5-Anhydro-3,4,6-tri-O-benzoyl-2-deoxy-d-arabino-hex-1-enitol (1) was boiled under reflux with methanol and AG 50W-X8 cation-exchange resin. A two-product mixture of glycosides (2 and 3) was obtained in 38% yield, together with 19% of unreacted material. 1,5-Anhydro-3,6-di-O-benzoyl-2-deoxy-d-arabino-hex-1-enitol (7) was prepared from 1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol by selective benzoylation, from which the corresponding 4-methanesulfonate 8 was obtained. Treatment of 8 with sodium benzoate in hexamethylphosphoric triamide for 72 h at 100° afforded 1,5-anhydro-3,4,6-tri-O-benzoyl-2-deoxy-d-lyxo-hex-1-enitol (9) in 52% yield. An unknown byproduct (B), tentatively shown to be a tri-O-benzoyl-d-hex-2-enopyranose analog, was also isolated in 14% yield. The 270-MHz n.m.r. spectrum of B was analyzed in terms of its J1,3, J2,4, and J4,5 coupling constants in relation to the various configurational and conformational possibilities for hex-2-enopyranoses, and was identified as 1,4,6-tri-O-benzoyl-2,3-dideoxy-α-d-threo-hex-2-enopyranose having the oH5 conformation. The analysis presented should also be applicable to pent-2-enopyranose systems. When 9 was treated with methanol in the presence of AG 50W-X8 cation-exchange resin, a mixture of glycosides 4 and 5 was obtained in 47% yield. The low yields were attributed to methanolysis of the benzoyl groups during the reaction.  相似文献   

8.
3,4,6-Tri-O-acetyl-d-galactal, on treatment in 1,2-dichloroethane with alcohols and stannic chloride as catalyst, readily undergoes allylic rearrangement-substitution, forming alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-threo-hex-2-enopyranosides in yields of 43-92%. Alkyl 3,4,6-tri-O-acetyl-2-deoxy-αβ-d-lyxo-hexopyranosides are formed as side-products in yields of 2-14 %. Stannic chloride-catalysis is also useful in allylic rearrangement of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino- hex-l-enitol (3,4,6-tri-O-acetyl-d-glucal) which, with methanol or ethanol, affords the corresponding alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosides in yields of 83 and 94%.  相似文献   

9.
Attempts to prepare 1,2:5,6 and 2,3:5,6 di-unsaturated sugars starting from 3,4,6-tri-O-acetyl-1,5-anhydro-1,2-dideo xy-d-arabino-hex-1-enitol or from ethyl 4,6-di-O-acetyl-1,5-anhydro-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside led to 1,5-anhydro-1,2,6-trideoxy-l-threo-hex-5-enitol and its 3,4-diacetate. Hydrogenation and hydrogenolysis of the unsaturated chloro and fluoro derivatives afforded 1,5-anhydro-1,2,6-trideoxy-d-arabino-hexitol and ethyl 4-O-acetyl-2,3,6-trideoxy-α-d-erythro-hexopyranoside.  相似文献   

10.
d-erythro-2,3-Hexodiulosono-1,4-lactone 2-arylhydrazones (2) were prepared by condensation of dehydro-d-arabino-ascorbic acid with the desired arylhydrazine. Reaction of 2 with hydroxylamine gave the 2-arylhydrazone 3-oximes (3). On boiling with acetic anhydride, 3 gave 2-aryl-4-(2,3-di-O-acetyl-d-erythro-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5,11-lactone (5), whereas the unacetylated triazole derivatives were obtained upon reaction of 3 with bromine in water. On treatment of 5 with hydrazine hydrate, 2-aryl-4-(d-erythro-glycerol-1-yl)-1,2,3-triazole-5-carboxylic acid 5-hydrazides (6) were obtained. Acetylation of 6 gave the hexaacetyl derivatives. Similarly, treatment of 5 with liquid ammonia gave the triazolecarboxamides (12). Vigorous acetylation of 12 with boiling acetic anhydride gave tetraacetates, whereas acetylation with acetic anhydride-pyridine gave triacetates. Periodate oxidation of 6 gave the 2-aryl-4-formyl-1,2,3-triazole-5-carboxylic acid 5-hydrazides (8), and, on reduction, 8 gave the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxylic acid 5-hydrazides, characterized as acetates. Similarly, periodate oxidation of 12 gave the triazolealdehyde (15), and reduction of 15 gave the hydroxymethyl derivatives (16). Acetylation of 16 gave the mono- and di-acetates, and, on reaction with o-phenylenediamine, 15 afforded the triazoleimidazole. Controlled reaction of 3 with sodium hydroxide, followed by neutralization, gave 3-(d-erythro-glycerol-1-yl)-4,5-isoxazolinedione 4-arylhydrazones. Reaction of 3 with HBr-HOAc gave 5-O-acetyl-6-bromo-6-deoxy-d-erythro-2,3-hexodiulosono-1,4-lactone 2-arylhydrazone 3-oximes (21). Compounds 21 were converted into 4-(2-O-acetyl-3-bromo-3-deoxy-d-erythro-glycerol-1-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,11-lactone on treatment with acetic anhydride.  相似文献   

11.
《Carbohydrate research》1986,153(1):17-24
1,5-Anhydro-2-deoxy-d-arabino- (d-glucal), 1,5-anhydro-2-deoxy-d-lyxo- (d-galactal), and 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-lyxo-hex-1-enitol (3,4,6-tri-O-acetyl-d-galactal) (3) were fluorinated in water and organic solvent-water with molecular fluorine and, for 18F-labelled compounds, with [18F]fluorine. Chemical yields of 40 and 10% were obtained for 2-deoxy-2-fluoro-d-glucose and 2-deoxy-2-fluoro-d-mannose, respectively, and 35 and 5% for 2-deoxy-2-fluoro-d-galactose (12) and 2-deoxy-2-fluoro-d-talose (13), respectively. In the fluorination of 3, the chemical yields of 12 and 13 were 38 and 6%, respectively. An l.c. separation of 2-deoxy-2-fluoro-d-hexoses is described.  相似文献   

12.
Condensation of dimeric 3,4,6-tri-O-acetyl-2-deoxy-2-nitroso-α-D-glucopyranosyl chloride (1) with 1,2-O-isopropylidene-α-D-glucofuranurono-6,3-lactone (2) gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-deoxy-2-hydroxyimino-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (3). Benzoylation of the hydroxyimino group with benzoyl cyanide in acetonitrile gave 1,2-O-isopropylidene-5-O-(3,4,6-tri-O-acetyl-2-benzoyloxyimino-2-deoxy-α-D-arabino-hexopyranosyl)-α-D-glucofuranurono-6,3-lactone (4). Compound 4 was reduced with borane in tetrahydrofuran, yielding 5-O-(2-amino-2-deoxy-α-D-glucopyranosyl)-1,2-O-isopropylidene-α-D-glucofuranose (5), which was isolated as the crystalline N-acetyl derivative (6). After removal of the isopropylidene acetal, the pure, crystalline title compound (10) was obtained.  相似文献   

13.
The vicinal cis-oxyamination of ethyl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2-enopyranoside (1) and of methyl 4-O-acetyl-2,3,6-trideoxy-α-D-erythro-hex-2-enopyranoside (11) as well as of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-(17) and -D-lyxo-hex-1-enitol (23) with Chloramine T-osmium tetraoxide was investigated (Sharpless reaction). The hex-2-enopyranosides 1 and 11 yielded the corresponding 3-deoxy-3-p-toluenesulfonamido-and 2-deoxy-2-p-toluenesulfonamido-hexopyranosides with the manno configuration in the ratio 2:1. The glycals 17 and 23 reacted with formation of the corresponding α-D-gluco and α-D-galactoN-tosyl-glycosylamines and of the 2-deoxy-2-p-toluenesulfonamidoglycoses in the ratio 3:1. The stereospecifity and the regioselectivity of the reactions are discussed. Quantum chemical calculations on models for the hex-2-enopyranosides 1 and 11 suggest a [3+2] cycloaddition of the N-tosylimido osmium(VIII) oxide in preference to a [2+2] mechanism with participation of the metal species. The preparative importance of the oxyamination reaction is demonstrated by a simple synthesis of N-acetyl-mycosamine.  相似文献   

14.
Fusion of 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino-hex-1-enitol with theophylline, in the presence of boron trifluoride etherate as the catalyst, caused condensation to occur. This reaction afforded a variety of products of nucleosidic character, which were successively separated by repeated chromatography on silica gel. The structures of the products were determined, on the basis of X-ray crystallographic analysis (for three compounds) and by means of n.m.r.-spectral data and mass spectrometry, as the following: 7-(2-acetamido-4,6-di-O-acetyl-2,3-dideoxy-β-d-erythro-hex-2-enopyranosyl)theophylline, the corresponding α- and β-d-threo derivatives, and 7-(2-acetamido-6-O-acetyl-2,3-dideoxy-α-d-threo-hex-2-enopyranosyl)theophylline and its β anomer.In addition to these 2′,3′-unsaturated nucleosides having the base linked at C-1′, three products of a new type, having the base attached at C-4′, were also isolated: 7-(methyl 2-acetamido-6-O-acetyl-2,3,4-trideoxy-β-d-erythro-hex-2-enopyranosid-4-yl)theophylline, and the corresponding α-d-threo and α-d-erythro isomers.The correlation of the data obtained by X-ray structure analysis and proton nuclear magnetic spectroscopy, together with their application for the determination of configuration and conformation of these compounds, are discussed. It appears that the 1H-n.m.r. data alone do not suffice for unambiguous and correct structure determination for these classes of compounds.  相似文献   

15.
A convenient preparative route involving eleven steps starting from D-glucose is described for the synthesis of D-ristosamine (15) hydrochloride. Methyl 2-deoxy-β-D-arabino-hexopyranoside, prepared from 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex- 1-enitol, was benzylidenated, and the product mesylated to give methyl 4,6-O-benzylidene-2-deoxy-3-O-methylsulfonyl-β-D-arabino-hexopyranoside. Azidolysis of this compound and subsequent opening of the 1,3-dioxane ring with N-bromosuccinimide gave methyl 3-azido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-βD-ribo-hexopyranoside. Simultaneous reduction of the azido and bromo groups gave a mixture that was benzoylated to give methyl N,O-dibenzoyl-β-D-ristosaminide and then hydrolyzed to 15 hydrochloride (3-amino-2,3,6-trideoxy-D-ribo-hexopyranose hydrochloride).  相似文献   

16.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

17.
Methyl 4,6-O-benzylidene-2-deoxy-α-d-erythro-hexopyranosid-3-ulose reacted with potassium cyanide under equilibrating conditions to give, initially, methyl 4,6-O-benzylidene-3-C-cyano-2-deoxy-α-d-ribo-hexopyranoside (7), which, because it reverted slowly to the thermodynamically stable d-arabino isomer, could be crystallised directly from the reaction mixture. The mesylate derived from the kinetic product 7 could be converted by published procedures into methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-d-arabino-hexopyranoside, which was transformed into methyl N-acetyl-α-d-vancosaminide on inversion of the configuration at C-4. A related approach employing methyl 2,6-dideoxy-4-O-methoxymethyl-α-l-erythro-hexopyranosid-3-ulose gave the kinetic cyanohydrin and thence, via the spiro-aziridine 27, methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-l-arabino-hexopyranoside, a known precursor of methyl N-acetyl-α-l-vancosaminide.  相似文献   

18.
Benzoylation of D-glycero-L-manno-heptono-1,4-lactone (1) with benzoyl chloride and pyridine for 2 h afforded crystalline penta-O-benzoyl-D-glycero-L-manno-heptono-1,4-lactone (2), but a large excess of reagent during 8 h also led to 2,5,6,7-tetra-O- benzoyl-3-deoxy-D-lyxo-hept-2-enono-1,4-lactone (3). Catalytic hydrogenation of 3 was stereoselective and gave 2,5,6,7-tetra-O-benzoyl-3-deoxy-D-galacto-heptono-1,4-lactone (4). Debenzoylation of 4 followed by oxidative decarboxylation with ceric sulfate in aqueous sulfuric acid gave 2-deoxy-D-lyxo-hexose (5). Application of the same reaction to 3-deoxy-D-gluco-heptono-1,4-lactone afforded 2-deoxy-D-arabino-hexose (6).  相似文献   

19.
Reaction of L-ascorbic acid with hydrogen bromide in acetic acid gave 6-bromo-6-deoxy-L-ascorbic acid, which was converted into 5,6-dideoxy-D-glycero-hex-2,3-enono-1,4-lactone. Hexonic acids or their lactones also gave bromo compounds on treatment with HBrAcOH. From D-galactono-1,4-lactone a 6-bromo derivative was obtained. Calcium D-gluconate yielded 2,6-dibromo-2,6-dideoxy-D-mannono-1,4-lactone, whereas D-mannono-1,4-lactone gave 2,6-dibromo-2,6-dideoxy-D-glucono-1,4-lactone.  相似文献   

20.
Methyl 2,3-O-benzylidene-6-deoxy-α-L-mannopyranoside (2) reacted with butyllithium to give a mixture of 1,5-anhydro-3-C-butyl-1,2,6-trideoxy-L-ribo-hex-1-enitol (3) and its L-arabino analogue (4), together with methyl 2,3,6-trideoxy-α-L-erythro-hex-2-enopyranoside (5). In contrast, the 4-O-methyl analogue (8) of 2 was converted by butyllithium into methyl 2,6-dideoxy-4-O-methyl-α-L-erythro-hexo-pyranosid-3-ulose (9), which was further characterized as its oxime 10. The 4-O-benzyl analogue of 8, obtained as two separate diastereoisomers (6 and 7) differing in configuration at C-2 of the dioxolane ring, gave a complex mixture of products on treatment with butyllithium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号