首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(5):600-610
Abstract

γ-Glutamyltransferase (GGT) plays a significant role in antioxidant defence and participates in the metabolism of glutathione (GSH). The enzyme is up-regulated after acute oxidative stress and during pro-oxidant periods, but the underlying regulatory mechanisms are not well known. The present investigation studied whether the endogenous reactive oxygen species (ROS) level was a determinant for GGT expression. A substantial amount of ROS is produced through the NADPH oxidase (NOX) system and knockdown of p22phox, a sub-unit of NOX1-4, resulted not only in reduced ROS levels but also in reduced GGT expression in human endometrial carcinoma cells. Phorbol-12-myristate-13-acetate (PMA) is an activator of NOX and it was found that PMA treatment of human colon carcinoma cells both increased cellular ROS levels and subsequently up-regulated GGT expression. On the other hand, the NOX inhibitor apocynin reduced ROS levels as well as GGT expression. The GGT mRNA sub-type A was increased after PMA-induced NOX activation. These results demonstrate that ROS generated from NOX enzymes are a significant determinant for GGT expression and activity.  相似文献   

2.
Reactive oxygen species (ROS) produced by activated astrocytes have been considered to be involved in the pathogenesis of neurodegenerative diseases, while NADPH oxidase is an essential enzyme involved in ROS-mediated signal transduction. The goal of the present study was to determine whether NADPH oxidase plays a role in ROS generation and cell survival in rat astrocytes. We found that the release of ROS in rat astrocytes was significantly increased by stimulation with calcium ionophore or opsonized zymosan, which are known to trigger a respiration burst in phagocytes by the NADPH oxidase pathway. Further study indicated that diphenylene iodonium (DPI), an inhibitor of NADPH oxidase, significantly suppressed the increase of ROS release caused by the calcium ionophore or opsonized zymosan. Cell survival assay and fluorescence double dyeing with acridine orange and ethidium bromide showed that DPI dose- and time-dependently decreased the viability of normal astrocytes, whereas exogenous supplementation of H2O2 can reverse the survival of DPI-treated astrocytes. For the first time, our results suggest that NADPH oxidase is an important enzyme for the generation of ROS in astrocytes, and the ROS generated by NADPH oxidase play an essential role in astrocyte survival.  相似文献   

3.
《Free radical research》2013,47(9):1033-1039
Abstract

This study aimed to examine the roles of reactive oxygen species (ROS) in cisplatin treatment of human prostate cancer cells; hormone-sensitive LNCaP and hormone-refractory PC3 and DU145 cells. Intracellular levels of ROS and H2O2 were measured and visualized using specific fluorescent probes. NADPH oxidase (NOX) activity was detected by lucigenin chemiluminescence assay. Expression levels of NOX isoforms were determined by semi-quantitative RT-PCR. Cisplatin treatment increased the intracellular levels of ROS and H2O2 in three prostate cancer cell lines. The increase was transient and robust in hormone-sensitive LNCaP cells compared with hormone-refractory PC3 and DU145 cells. Consistent with these findings, the NOX activity induced by cisplatin was higher in LNCaP cells than in PC3 and DU145 cells. Expression pattern of NOX isoforms varied among three cell lines and the NOX activity was independent of NOX expression. Taken together, we have shown that cisplatin induces production of ROS and H2O2 via NOX activation in human prostate cancer cell lines, which is most prominent in hormone-sensitive LNCaP cells.  相似文献   

4.
We determined the roles of reactive oxygen species (ROS) in the expression of cyclooxygenase-2 (COX-2) and the production of prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated microglia. LPS treatment increased intracellular ROS in rat microglia dose-dependently. Pre-treatment with superoxide dismutase (SOD)/catalase, or SOD/catalase mimetics that can scavenge intracellular ROS, significantly attenuated LPS-induced release in PGE2. Diphenylene iodonium (DPI), a non-specific NADPH oxidase inhibitor, decreased LPS-induced PGE2 production. In addition, microglia from NADPH oxidase-deficient mice produced less PGE2 than those from wild-type mice following LPS treatment. Furthermore, LPS-stimulated expression of COX-2 (determined by RT-PCR analysis of COX-2 mRNA and western blot for its protein) was significantly reduced by pre-treatment with SOD/catalase or SOD/catalase mimetics. SOD/catalase mimetics were more potent than SOD/catalase in reducing COX-2 expression and PGE2 production. As a comparison, scavenging ROS had no effect on LPS-induced nitric oxide production in microglia. These results suggest that ROS play a regulatory role in the expression of COX-2 and the subsequent production of PGE2 during the activation process of microglia. Thus, inhibiting NADPH oxidase activity and subsequent ROS generation in microglia can reduce COX-2 expression and PGE2 production. These findings suggest a potential therapeutic intervention strategy for the treatment of inflammation-mediated neurodegenerative diseases.  相似文献   

5.
We demonstrated that the production of reactive oxygen species (ROS) by U937 macrophage-like cells was suppressed upon infection with a wild type Legionella pneumophila strain, whereas such suppression was not observed in the case of infection with intracellular growth-deficient mutants. This was supported not only by measuring ROS released into the supernatants of cell cultures by chemiluminescence assaying but also by detecting intracellular ROS with a fluorescent probe, 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (APF), under a confocal laser scanning microscope. Furthermore, more than 60% of the phagosomes containing intracellular growth-deficient mutants were colocalized with p47(phox), which is the cytosolic subunit of NADPH oxidase, consistently throughout the observation period in an early stage of bacterial infection. In contrast, the colocalization of p47(phox) was suppressed after infection with the wild type strain. These results suggest that the interference with ROS production by U937 cells infected with wild type L. pneumophila is due to a failure of NADPH oxidase activation through inhibition of p47(phox) recruitment to phagosomes harboring bacteria. The results also highlighted the difference in the nature of phagosomes between ones harboring the wild type and ones the intracellular growth-deficient strains.  相似文献   

6.
Long-chain nonesterified ("free") fatty acids (FFA) and some of their derivatives and metabolites can modify intracellular production of reactive oxygen species (ROS), in particular O(2)(-) and H(2)O(2). In mitochondria, FFA exert a dual effect on ROS production. Because of slowing down the rate of electron flow through Complexes I and III of the respiratory chain due to interaction within the complex subunit structure, and between Complexes III and IV due to release of cytochrome c from the inner membrane, FFA increase the rate of ROS generation in the forward mode of electron transport. On the other hand, due to their protonophoric action on the inner mitochondrial membrane ("mild uncoupling effect"), FFA strongly decrease ROS generation in the reverse mode of electron transport. In the plasma membrane of phagocytic neutrophils and a number of other types of cells, polyunsaturated FFA stimulate O(2)(-) generation by NADPH oxidase. These effects of FFA can modulate signaling functions of ROS and be, at least partly, responsible for their proapoptotic effects in several types of cells.  相似文献   

7.
Recent data indicate that plants, in a manner similar to the situation found in mammalian phagocytotic cells, produce reactive oxygen species (ROS) in response to pathogen infection. This reaction could be very quick when using pre-existing, usually exocellular, components and/or, when biochemical machinery of the cell is activated, relatively late and long-lasting. The oxidative burst is defined as a rapid, transient production of high levels of ROS in response to external stimuli. Two major models depicting the origin of ROS in the oxidative burst are described, namely: the NADPH oxidase system and the pH-dependent generation of hydrogen peroxide by exocellular peroxidases. Additionally, the participation of exocellular ROS-generating enzymes, like germin-like oxalate oxidases and amine oxidases, in plant defence response is demonstrated. The involvement of protoplasmic ROS-generating systems is also indicated.  相似文献   

8.
Fission yeast Cdc42 regulates polarized growth and is involved in For3 formin activation and actin cable assembly. We show here that a thermosensitive strain carrying the cdc42L160S allele has membrane traffic defects independent of the actin cable defects. This strain has decreased acid phosphatase (AP) secretion, intracellular accumulation of vesicles and fragmentation of vacuoles. In addition, the exocyst is not localized to the tips of these cells. Overproduction of the scaffold protein Pob1 suppressed cdc42L160S thermosensitive growth and restored exocyst localization and AP secretion. The GTPase Rho3 also suppressed cdc42L160S thermosensitivity, restored exocyst localization and AP secretion. However, Rho3 did not restore the actin cables in these cells as Pob1 does. Similarly, overexpression of psy1(+) , coding a syntaxin (t-SNARE) homolog, or of ypt2(+) , coding an SEC4 homolog in fission yeast, rescued growth at high temperature but did not restore actin cables, nor the exocyst-polarized localization. cdc42L160S cells also have defects in vacuole formation that were rescued by Pob1, Rho3 and Psy1. All together, we propose that Cdc42 and the scaffold Pob1 are required for membrane trafficking and fusion, contributing to polarized secretion, endosome recycling, vacuole formation and growth.  相似文献   

9.
《Free radical research》2013,47(3):336-341
Abstract:

It has previously been reported that the globular form of adiponectin (gAd), mature adipocyte-derived cytokine, induced generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. This study investigated whether diacylglycerol kinases (DGKs), enzymes functioning in sub-cellular signalling pathways, had a role on gAd-induced ROS generation in RAW 264 cells. Administration of R59022, a specific inhibitor for DGK, reduced gAd-induced ROS generation and NO release. RAW 264 cell expressed DGKα mRNA. Depression of DGKα mRNA by RNA interference significantly reduced the ROS generation in response to gAd treatment. Interestingly, transfection with the DGKα-specific small interfering RNA attenuated the expression level of Nox1 mRNA in gAd-treated RAW 264 cells. In addition, the DGKα knockdown with siRNA suppressed gAd-induced NO release.  相似文献   

10.
Pigment epithelium-derived factor is a multifunctional serpin implicated in insulin resistance in metabolic disorders. Recent evidence suggests that exposure of peripheral tissues such as skeletal muscle to PEDF has profound metabolic consequences with predisposition towards chronic conditions such as obesity, type 2 diabetes, metabolic syndrome and polycystic ovarian syndrome. Chronic inflammation shifts muscle metabolism towards increased glycolysis and decreased oxidative metabolism. In the present study, we demonstrate a novel effect of PEDF on cellular metabolism in mouse cell line (C2C12) and human primary skeletal muscle cells. PEDF addition to skeletal muscle cells induced enhanced phospholipase A2 activity. This was accompanied with increased production of reactive oxygen species in a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent manner that triggered a shift towards a more glycolytic phenotype. Extracellular flux analysis and glucose consumption assays demonstrated that PEDF treatment resulted in enhanced glycolysis but did not change mitochondrial respiration. Our results demonstrate that skeletal muscle cells express a PEDF-inducible oxidant generating system that enhances glycolysis but is sensitive to antioxidants and NADPH oxidase inhibition.  相似文献   

11.
Lee SM  Huh TL  Park JW 《Biochimie》2001,83(11-12):1057-1065
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through supply of NADPH for antioxidant systems. When exposed to various reactive oxygen species such as hydrogen peroxide, singlet oxygen generated by photoactivated dye, superoxide anion, and hydroxyl radical produced by metal-catalyzed Fenton reactions, ICDH was susceptible to oxidative modification and damage, which was indicated by the loss of activity, fragmentation of the peptide as well as by the formation of carbonyl groups. Oxidative damage to ICDH was inhibited by antioxidant enzymes, free radical scavengers, and spin-trapping agents. The structural alterations of modified enzymes were indicated by the increase in thermal instability and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANSA). The reactive oxygen species-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

12.
《Free radical research》2013,47(7):903-911
Abstract

Renal mass reduction, such as unilateral nephrectomy induces a compensatory hypertrophy of remaining renal mass in response to overload induced by reduction of functional renal parenchyma. In our recent study, we observed that the recovery of ischemic injured kidney following transient unilateral renal ischemia took longer time than that following transient bilateral renal ischemia, indicating that non-damaged kidney may affect the damaged kidney and vice versa. Here, we investigated whether transient and partial renal parenchymal injury by transient unilateral renal ischemia (UI) results in the hypertrophy of its contralateral kidney (CLK) and reactive oxygen species is associated with the hypertrophy. Thirty minutes of UI resulted in gradual increase in CLK weight over time. UI increased superoxide formation, but not lipid peroxidation in the CLK. After UI, a significant increase in the number of NADPH oxidase 2 (Nox2)-expressing cells and the level of Nox2 expression in the CLK was observed. In parallel with the increases in Nox2-expressing cells in CLKs, infiltration of bone marrow-derived cells (BMDC) increased in CLK. Treatments with Mn(III) Tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP, a superoxide dismutase (SOD) mimetic) and apocynin (a putative NADPH oxidase inhibitor) inhibited UI-induced hypertrophy of CLK along with reduction in Nox2-positive cell, BMDC, amount of Nox2 expression and superoxide formation. In conclusion, transient and partial renal mass reduction by UI resulted in the hypertrophy of CLK through increased ROS formation by infiltrated cells into the interstitium of CLK.  相似文献   

13.
Inflammatory processes in asthma are characterized by an infiltration of inflammatory cells including mononuclear phagocytes. It has been observed that mononuclear phagocytes, alveolar macrophages and blood monocytes, release higher quantities of reactive oxygen species in asthmatic patients than in healthy subjects. Chemiluminescence assays were developed to measure the superoxide anion and the other reactive oxygen species. The chemiluminescence response was first analysed with a luminometer, which made it possible to study cells in suspension before and after PMA-stimulation. Secondly a video-imaging camera was used in experiments on adherent cells before and after stimulation with PMA and/or specific stimulus IgE/anti-IgE. Both techniques showed that human alveolar macrophages, blood monocytes, PMN and lymphocytes were spontaneously primed in vivo and were more easily stimulated in asthma. Analysis of adherent cells in vitro may provide give information on the physiological condition of adherent cells in vivo.  相似文献   

14.
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans.  相似文献   

15.
Marfan syndrome (MFS) is a connective tissue disorder that results in aortic root aneurysm formation. Reactive oxygen species (ROS) seem to play a role in aortic wall remodelling in MFS, although the mechanism remains unknown. MFS Fbn1C1039G/+ mouse root/ascending (AS) and descending (DES) aortic samples were examined using DHE staining, lucigenin‐enhanced chemiluminescence (LGCL), Verhoeff's elastin‐Van Gieson staining (elastin breakdown) and in situ zymography for protease activity. Fbn1C1039G/+ AS‐ or DES‐derived smooth muscle cells (SMC) were treated with anti‐TGF‐β antibody, angiotensin II (AngII), anti‐TGF‐β antibody + AngII, or isotype control. ROS were detected during early aneurysm formation in the Fbn1C1039G/+ AS aorta, but absent in normal‐sized DES aorta. Fbn1C1039G/+ mice treated with the unspecific NADPH oxidase inhibitor, apocynin reduced AS aneurysm formation, with attenuated elastin fragmentation. In situ zymography revealed apocynin treatment decreased protease activity. In vitro SMC studies showed Fbn1C1039G/+‐derived AS SMC had increased NADPH activity compared to DES‐derived SMC. AS SMC NADPH activity increased with AngII treatment and appeared TGF‐β dependent. In conclusion, ROS play a role in MFS aneurysm development and correspond anatomically with aneurysmal aortic segments. ROS inhibition via apocynin treatment attenuates MFS aneurysm progression. AngII enhances ROS production in MFS AS SMCs and is likely TGF‐β dependent.  相似文献   

16.
Elevated levels of extracellular nucleotides are present at sites of inflammation, platelet degranulation and cellular damage or lysis. These extracellular nucleotides can lead to the activation of purinergic (nucleotide) receptors on various leukocytes, including monocytes, macrophages, eosinophils, and neutrophils. In turn, nucleotide receptor activation has been linked to increased cellular production and release of multiple inflammatory mediators, including superoxide anion, nitric oxide and other reactive oxygen species (ROS). In the present review, we will summarize the evidence that extracellular nucleotides can facilitate the generation of multiple ROS by leukocytes. In addition, we will discuss several potential mechanisms by which nucleotide-enhanced ROS production may occur. Delineation of these mechanisms is important for understanding the processes associated with nucleotide-induced antimicrobial activities, cell signalling, apoptosis, and pathology. This work was supported by National Institutes of Health Grants HL56396 and AI50500. The first author was supported by the Hematology Training Program NIH 5 T32 HL07899 at the University of Wisconsin.  相似文献   

17.
A temporal increase in temperature triggers a series of stress responses and alters vascular smooth muscle (VSM) contraction induced by agonist stimulation. Here we examined the role of reactive oxygen species (ROS) in heat shock-dependent augmentation of angiotensin II (AngII)-induced VSM contraction. Endothelium-denuded rat aortic rings were treated with heat shock for 45 min at 42 °C and then subjected to assays for the production of force, ROS, and the expression of ROS-related enzymes. AngII-induced contraction was enhanced in heat shock-treated aorta. AngII-induced production of hydrogen peroxide and superoxide were elevated in response to the heat shock treatment. Pre-treatment with superoxide dismutases (SOD) mimetic and inhibitors for glutathione peroxidase and NADPH oxidase but not for xanthine oxidase eliminated an increase in the AngII-induced contraction in the heat shock-treated aorta. Heat shock increased the expression of p47phox, a cytosolic subunit of NADPH oxidase, but not Cu-Zn-SOD and Mn-SOD. In addition, heat shock increased contraction that was evoked by hydrogen peroxide and pyrogallol. These results suggest that heat shock causes an elevation of ROS as well as a sensitization of ROS signal resulting in an augmentation of VSM contraction in response to agonist.  相似文献   

18.
Platelets play a key role in hemostasis and changes in redox balance are known to alter platelet activation and aggregation. Interestingly, activation of platelets leads to production of reactive oxygen species (ROS), but the role(s) of these ROS remain unclear. Using flow cytometry and chemiluminescence, agonist-induced ROS generation was found to be spatially distinct with stimulation through the major collagen receptor GPVI inducing only intraplatelet ROS while thrombin induced production of extracellular ROS. Platelet activation by either the GPVI-selective agonist convulxin or thrombin was differentially regulated by ROS generation. Thus, surface expression of CD62P, CD40L, or activated integrin alphaIIbbeta3 was abrogated by pharmacologic antioxidants but externalization of phosphatidylserine was not inhibited. Furthermore, extracellular antioxidants SOD/catalase markedly inhibited thrombin-, but not convulxin-, induced CD62P expression and alphaIIbbeta3 activation. The data suggest that ROS selectively regulate biochemical steps in platelet activation and that distinct source(s) of ROS and discrete redox-sensitive pathway(s) may control platelet activation in response to GPVI or thrombin stimulation. Thus, targeting ROS with site-specific antioxidants may differentially regulate platelet activation via thrombin or collagen.  相似文献   

19.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

20.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号