首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
β-amyloid precursor protein (APP) is a key factor in Alzheimer''s disease (AD) but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.  相似文献   

2.
3.
The neurotrophin receptor homolog (NRH2) is closely related to the p75 neurotrophin receptor (p75NTR); however, its function and role in neurotrophin signaling are unclear. NRH2 does not bind to nerve growth factor (NGF), however, is able to form a receptor complex with tropomyosin-related kinase receptor A (TrkA) and to generate high-affinity NGF binding sites. Despite this, the mechanisms underpinning the interaction between NRH2 and TrkA remain unknown. Here, we identify that the intracellular domain of NRH2 is required to form an association with TrkA. Our data suggest extensive intracellular interaction between NRH2 and TrkA, as either the juxtamembrane or death domain regions of NRH2 are sufficient for interaction with TrkA. In addition, we demonstrate that TrkA signaling is dramatically influenced by the co-expression of NRH2. Importantly, NRH2 did not influence all downstream TrkA signaling pathways, but rather exerted a specific effect, enhancing src homology 2 domain-containing transforming protein (Shc) activation. Moreover, downstream of Shc, the co-expression of NRH2 resulted in TrkA specifically modulating mitogen-activated protein kinase pathway activation, but not the phosphatidylinositol 3-kinase/Akt pathway. These results indicate that NRH2 utilizes intracellular mechanisms to not only regulate NGF binding to TrkA, but also specifically modulate TrkA receptor signaling, thus adding further layers of complexity and specificity to neurotrophin signaling.  相似文献   

4.
Abstract: The pheochromocytoma PC12 cell line was used as a model system to characterize the role of the p75 neurotrophin receptor (p75NTR) and tyrosine kinase (Trk) A nerve growth factor (NGF) receptors on amyloid precursor protein (APP) expression and processing. NGF increased in a dose-dependent fashion neurite outgrowth, APP mRNA expression, and APP secretion with maximal effects at concentrations known to saturate TrkA receptor binding. Displacement of NGF binding to p75NTR by addition of an excess of brain-derived neurotrophic factor abolished NGF's effects on neurite outgrowth and APP metabolism, whereas addition of brain-derived neurotrophic factor alone did not induce neurite outgrowth or affect APP mRNA or protein processing. However, treatment of PC12 cells with C2-ceramide, an analogue of ceramide, the endogenous product produced by the activity of p75NTR-activated sphingomyelinase, mimicked the effects of NGF on cell morphology and stimulation of both APP mRNA levels and APP secretion. Specific stimulation of TrkA receptors by receptor cross-linking, on the other hand, selectively stimulated neurite outgrowth and APP secretion but not APP mRNA levels, which were decreased. These findings demonstrate that in PC12 cells expressing p75NTR and TrkA receptors, binding of NGF to the p75NTR is required to mediate NGF effects on cell morphology and APP metabolism. Furthermore, our data are consistent with NGF having specific effects on p75NTR not shared with other neurotrophins. Lastly, we have shown that specific activation of TrkA receptors—in contrast to p75NTR-associated signaling—stimulates neurite outgrowth and increases nonamyloidogenic secretory APP processing without increases in APP mRNA levels.  相似文献   

5.
The ovarian surface epithelium (OSE) plays an important role in normal ovarian physiology. During each reproductive cycle, the OSE takes part in the cyclical ovulatory ruptures and repair. The aim of this study was to investigate the immunolocalization of nerve growth factor (NGF) and its receptors, tyrosine kinase A (TrkA) and p75, in the OSE cells of the wild ground squirrels during the breeding and nonbreeding seasons. There were marked variations in ovarian weight and size between the breeding and the nonbreeding seasons. Histologically, cuboidal cells and squamous cells were identified in the OSE of both seasons. Yet, stronger immunostaining of NGF, TrkA and p75 were observed in cuboidal cells and squamous cells in the breeding season as compared to the nonbreeding season. In addition, plasma gonadotropin concentrations were higher in the breeding season than in the nonbreeding season, suggesting that the expression patterns of NGF, TrkA and p75 in the OSE were correlated with changes in plasma gonadotropins. These findings suggested that NGF and its receptor TrkA and p75 may be involved in the regulation of seasonal changes in the OSE of wild ground squirrel.  相似文献   

6.
Nerve growth factor (NGF) is critical for the proliferation, differentiation, and survival of neurons through its binding to the p75NTR and TrkA receptors. Dysregulation of NGF has been implicated in several pathologies, including neurodegeneration (i.e., Parkinson's and Alzheimer's diseases) and both inflammatory and neuropathic pain states. Therefore, small molecule inhibitors that block NGF–receptor interactions have significant therapeutic potential. Small molecule antagonists ALE-0540, PD90780, Ro 08-2750, and PQC 083 have all been reported to inhibit NGF from binding the TrkA receptor. Interestingly, the characterization of the ability of these molecules to block NGF–p75NTR interactions has not been performed. In addition, the inhibitory action of these molecules has never been evaluated using surface plasmon resonance (SPR) spectroscopy, which has been proven to be highly useful in drug discovery applications. In the current study, we used SPR biosensors to characterize the binding of NGF to the p75NTR receptor in addition to characterizing the inhibitory potential of the known NGF antagonists. The results of this study provide the first evaluation of the ability of these compounds to block NGF binding to p75NTR receptor. In addition, only PD90780 was effective at inhibiting the interaction of NGF with p75NTR, suggesting receptor selectivity between known NGF inhibitors.  相似文献   

7.
NGF modifies cholinergic neurons through its low-p75 and high affinity-TrkA receptors. Native p75(+)TrkA(–) and trkA-transfected p75(+)TrkA(+) SN56 hybrid cholinergic septal cells were used here to discriminate effects mediated by each receptor. In TrkA(–) cells, NGF (100 ng/ml) affected neither choline acetyltransferase nor morphology but depressed pyruvate dehydrogenase activity by about 30%. Aged 25–35 -amyloid (1 M) caused no changes in choline acetyltransferase and pyruvate dehydrogenase activities in nondifferentiated and differentiated TrkA(–) cells. On the contrary, in nondiferentiated TrkA(+) NGF brought about a 2.5-fold increase of choline acetyltransferase. In differentiated TrkA(+) cells, b-amyloid resulted in no change in PDH but 65% suppression of choline acetyltransferase activity and reduction of their extensions. Thus, activation of TrkA receptors may overcome p75 receptor–mediated inhibitory effects on pyruvate dehydrogenase expression in cholinergic cells. On the other hand, it would make expression of choline acetyltransferase and cell differentiation more susceptible to suppressory effects of -amyloid.  相似文献   

8.
Malignant gliomas are highly invasive, proliferative, and resistant to treatment. Previously, we have shown that p75 neurotrophin receptor (p75NTR) is a novel mediator of invasion of human glioma cells. However, the role of p75NTR in glioma proliferation is unknown. Here we used brain tumor-initiating cells (BTICs) and show that BTICs express neurotrophin receptors (p75NTR, TrkA, TrkB, and TrkC) and their ligands (NGF, brain-derived neurotrophic factor, and neurotrophin 3) and secrete NGF. Down-regulation of p75NTR significantly decreased proliferation of BTICs. Conversely, exogenouous NGF stimulated BTIC proliferation through α- and γ-secretase-mediated p75NTR cleavage and release of its intracellular domain (ICD). In contrast, overexpression of the p75NTR ICD induced proliferation. Interestingly, inhibition of Trk signaling blocked NGF-stimulated BTIC proliferation and p75NTR cleavage, indicating a role of Trk in p75NTR signaling. Further, blocking p75NTR cleavage attenuated Akt activation in BTICs, suggesting role of Akt in p75NTR-mediated proliferation. We also found that p75NTR, α-secretases, and the four subunits of the γ-secretase enzyme were elevated in glioblastoma multiformes patients. Importantly, the ICD of p75NTR was commonly found in malignant glioma patient specimens, suggesting that the receptor is activated and cleaved in patient tumors. These results suggest that p75NTR proteolysis is required for BTIC proliferation and is a novel potential clinical target.  相似文献   

9.
Nerve growth factor (NGF) promotes cell survival via binding to the tyrosine kinase receptor A (TrkA). Its precursor, proNGF, binds to p75(NTR) and sortilin receptors to initiate apoptosis. Current disagreement exists over whether proNGF acts neurotrophically following binding to TrkA. As in Alzheimer's disease the levels of proNGF increase and TrkA decrease, it is important to clarify the properties of proNGF. Here, wild-type and cleavage-resistant mutated forms (M) of proNGF were engineered and their binding characteristics determined. M-proNGF and NGF bound to p75(NTR) with similar affinities, whilst M-proNGF had a lower affinity than NGF for TrkA. M-proNGF behaved neurotrophically, albeit less effectively than NGF. M-proNGF addition resulted in phosphorylation of TrkA and ERK1/2, and in PC12 cells elicited neurite outgrowth and supported cell survival. Conversely, M-proNGF addition to cultured cortical neurons initiated caspase 3 cleavage. Importantly, these biological effects were shown to be mediated by unprocessed M-proNGF. Surprisingly, binding of the pro region alone to TrkA, at a site other than that of NGF, caused TrkA and ERK1/2 phosphorylation. Our data show that M-proNGF stimulates TrkA to a lesser degree than NGF, suggesting that in Alzheimer brain the increased proNGF : NGF and p75(NTR) : TrkA ratios may permit apoptotic effects to predominate over neurotrophic effects.  相似文献   

10.
The nerve growth factor (NGF) precursor, proNGF, is implicated in various neuropathological states. ProNGF signals apoptosis by forming a complex with the receptors p75 and sortilin, however, it can also induce neurite growth, proposed to be mediated by the receptor of mature NGF, tyrosine kinase receptor A (TrkA). The way in which these dual effects occur in adult neurons is unclear. We investigated the neurotrophic effects of proNGF on peptidergic sensory neurons isolated from adult mouse dorsal root ganglia and found that proNGF stimulated neurite extension and branching, requiring p75, sortilin and TrkA. Neurite growth rarely occurred in sortilin-expressing neurons but was commonly observed in TrkA-positive, sortilin-negative neurons that associated closely with sortilin-positive glia. ProNGF was unable to induce local trophic effects at growth cones where sortilin-positive glia was absent. We propose that in adult sensory neurons the neurotrophic response to proNGF is mediated by NGF and TrkA, and that peri-somatic glia may participate in sortilin- and p-75 dependent cleavage of proNGF. The potential ability of local glial cells to provide a targeted supply of NGF may provide an important way to promote trophic (rather than apoptotic) outcomes under conditions where regeneration or sprouting is required.  相似文献   

11.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/− or p53−/− mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

12.
Wehrman T  He X  Raab B  Dukipatti A  Blau H  Garcia KC 《Neuron》2007,53(1):25-38
Nerve growth factor engages two structurally distinct transmembrane receptors, TrkA and p75, which have been proposed to create a "high-affinity" NGF binding site through formation of a ternary TrkA/NGF/p75 complex. To define a structural basis for the high-affinity site, we have determined the three-dimensional structure of a complete extracellular domain of TrkA complexed with NGF. The complex reveals a crab-shaped homodimeric TrkA structure, but a mechanism for p75 coordination is not obvious. We investigated the heterodimerization of membrane-bound TrkA and p75, on intact mammalian cells, using a beta-gal protein-protein interaction system. We find that NGF dimerizes TrkA and that p75 exists on the cell surface as a preformed oligomer that is not dissociated by NGF. We find no evidence for a direct TrkA/p75 interaction. We propose that TrkA and p75 likely communicate through convergence of downstream signaling pathways and/or shared adaptor molecules, rather than through direct extracellular interactions.  相似文献   

13.
Cleavage of transmembrane receptors by γ-secretase is the final step in the process of regulated intramembrane proteolysis (RIP) and has a significant impact on receptor function. Although relatively little is known about the molecular mechanism of γ-secretase enzymatic activity, it is becoming clear that substrate dimerization and/or the α-helical structure of the substrate can regulate the site and rate of γ-secretase activity. Here we show that the transmembrane domain of the pan-neurotrophin receptor p75NTR, best known for regulating neuronal death, is sufficient for its homodimerization. Although the p75NTR ligands NGF and pro-NGF do not induce homerdimerization or RIP, homodimers of p75NTR are γ-secretase substrates. However, dimerization is not a requirement for p75NTR cleavage, suggesting that γ-secretase has the ability to recognize and cleave each receptor molecule independently. The transmembrane cysteine 257, which mediates covalent p75NTR interactions, is not crucial for homodimerization, but this residue is required for normal rates of γ-secretase cleavage. Similarly, mutation of the residues alanine 262 and glycine 266 of an AXXXG dimerization motif flanking the γ-secretase cleavage site within the p75NTR transmembrane domain alters the orientation of the domain and inhibits γ-secretase cleavage of p75NTR. Nonetheless, heteromer interactions of p75NTR with TrkA increase full-length p75NTR homodimerization, which in turn potentiates the rate of γ-cleavage following TrkA activation independently of rates of α-cleavage. These results provide support for the idea that the helical structure of the p75NTR transmembrane domain, which may be affected by co-receptor interactions, is a key element in γ-secretase-catalyzed cleavage.  相似文献   

14.
The hepatocytes express nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A (TrkA). However, the link between NGF/TrkA system and hepatocyte proliferation in diabetic animals and the effects of exendin-4, a glucagon like peptide-1 (GLP-1) receptor agonist, on this system are not known. BALB/c male mice were divided into four groups. The first group was given citrate buffer only, the second group was administered exendin-4 alone, the third group received streptozotocin (STZ), and the fourth group was given both STZ and exendin-4. Exendin-4 (3 μg/kg) was administered by subcutaneous injection daily for 30 days after the animals were rendered diabetic by administration of STZ (200 mg/kg). With treatment of exendin-4 to the diabetic mice the following results were noted (i) NGF, TrkA and proliferating cell nuclear antigen positive hepatocytes were decreased; (ii) p75 neurotrophin receptor and caspase-3 positive hepatocyte could not be detected; (iii) liver alanine transaminase and aspartate transaminase activities, lipid peroxidation, protein carbonyl and myeloperoxidase levels were decreased; (iv) liver catalase, superoxide dismutase, glutathione peroxidase activities and glutathione levels were increased. These data suggest that exendin-4 might exerts its anti-proliferative action through blocking NGF/TrkA system and stimulating oxidative defense system in liver of diabetic mice.  相似文献   

15.
Nerve growth factor (NGF) is critical for the development and maintenance of sympathetic and sensory neurons in the developing nervous system, including nociceptors. In the adult nervous system, NGF is known to produce significant pain signals by binding to the TrkA and p75NTR receptors. Several pathological pain disorders are associated with nerve growth factor dysregulation, including neuropathic pain, osteoarthritic pain, and hyperalgesia. Currently, clinical management of these pathologies has relied on the use of opioid and non-steroidal anti-inflammatory drugs (NSAID). However, several chronic pain conditions demonstrate insensitivity to NSAID treatment or the development of detrimental opioid-related side effects, including addiction. As NGF plays an important role in pain generation; antibodies, small molecules and peptides have been designed to antagonize NGF. In this review, we discuss the structural biology of NGF ligand/receptor interaction, and we review current biological and pharmacological strategies to modulate NGF-related pathologies.  相似文献   

16.
The neurotrophin family with its first member, nerve growth factor (NGF), binds two classes of receptors, more specifically to Trk receptors and to a shared p75NTR receptor. It has been shown that proNGF rather than NGF is predominant in the mature central nervous system. A recent finding indicated that a furin-resistant proNGF preferentially binds to p75NTR, initiating a pro-apoptotic cascade even in the presence of TrkA. In this context, rodent oligodendrocytes were reported to undergo cell death when exposed to proNGF. We have investigated the effect of a non-mutated 32 kDa human recombinant proNGF (rhproNGF) on cultured pig oligodendrocytes which express TrkA, p75NTR and sortilin. Pig oligodendrocytes respond to rhproNGF (50 ng/mL) with an enhanced regeneration of their processes as already observed for NGF. Activity of mitogen-activated protein kinase (MAPK), which plays an important role in oligodendroglial process formation, was increased even when rhproNGF processing was inhibited by the furin inhibitor Decanoyl-RVKR-CMK. Similarly, a cleavage-resistant proNGF (R-1G) activated MAPK and promoted oligodendroglial process regeneration. High concentrations of rhproNGF (300 ng/mL) did not induce cell death. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blotting revealed that oligodendrocytes process rhproNGF to NGF. NGF was detected in Western blots of oligodendroglial lysates already 10 min after rhproNGF exposure, followed by a release of NGF into the culture medium. Indirect evidence indicates that rhproNGF processing occurs via an endocytotic route.  相似文献   

17.
Nerve growth factor (NGF) is generated from a precursor, proNGF, that is proteolytically processed. NGF preferentially binds a trophic tyrosine kinase receptor, TrkA, while proNGF binds a neurotrophin receptor (NTR), p75NTR, that can have neurotoxic activity. Previously, we along with others showed that the soluble protein α2-macroglobulin (α2M) is neurotoxic. Toxicity is due in part to α2M binding to NGF and inhibiting trophic activity, presumably by preventing NGF binding to TrkA. However, the mechanisms remained unclear. Here, we show ex vivo and in vivo three mechanisms for α2M neurotoxicity. First, unexpectedly the α2M-NGF complexes do bind TrkA receptors but do not induce TrkA dimerization or activation, resulting in deficient trophic support. Second, α2M makes stable complexes with proNGF, conveying resistance to proteolysis that results in more proNGF and less NGF. Third, α2M-proNGF complexes bind p75NTR and are more potent agonists than free proNGF, inducing tumor necrosis factor alpha (TNF-α) production. Hence, α2M regulates proNGF/p75NTR positively and mature NGF/TrkA negatively, causing neuronal death ex vivo. These three mechanisms are operative in vivo, and α2M causes neurodegeneration in a p75NTR- and proNGF-dependent manner. α2M could be exploited as a therapeutic target, or as a modifier of neurotrophin signals.  相似文献   

18.
The TrkA receptor is activated primarily by nerve growth factor (NGF), but it can also be activated by high concentrations of neurotrophin 3 (NT-3). The pan-neurotrophin receptor p75(NTR) strongly inhibits activation of TrkA by NT-3 but not by NGF. To examine the role of p75(NTR) in regulating the specificity of TrkA signaling, we expressed both receptors in Xenopus oocytes. Application of NGF or NT-3 to oocytes expressing TrkA alone resulted in efflux of (45)Ca(2+) by a phospholipase C-gamma-dependent pathway. Coexpression of p75(NTR) with TrkA inhibited (45)Ca(2+) efflux in response to NT-3 but not NGF. The inhibitory effect on NT-3 activation of TrkA increased with increasing expression of p75(NTR). Coexpression of a truncated p75(NTR) receptor lacking all but the first 9 amino acids of the cytoplasmic domain inhibited NT-3 stimulation of (45)Ca(2+) efflux, whereas coexpression of an epidermal growth factor receptor/p75(NTR) chimera (extracellular domain of epidermal growth factor receptor with transmembrane and cytoplasmic domains of p75(NTR)) did not inhibit NT-3 signaling through TrkA. These studies demonstrated that the extracellular domain of p75(NTR) was necessary to inhibit NT-3 signaling through TrkA. Remarkably, p75(NTR) binding to NT-3 was not required to prevent signaling through TrkA, since occupying p75(NTR) with brain-derived neurotrophic factor or anti-p75 antibody (REX) did not rescue the ability of NT-3 to activate (45)Ca(2+) efflux. These data suggested a physical association between TrkA and p75(NTR). Documenting this physical interaction, we showed that p75(NTR) and TrkA could be coimmunoprecipitated from Xenopus oocytes. Our results suggest that the interaction of these two receptors on the cell surface mediated the inhibition of NT-3-activated signaling through TrkA.  相似文献   

19.
20.
Membrane protein sorting is mediated by interactions between proteins and lipids. One mechanism that contributes to sorting involves patches of lipids, termed lipid rafts, which are different from their surroundings in lipid and protein composition. Although the nerve growth factor (NGF) receptors, TrkA and p75(NTR) collaborate with each other at the plasma membrane to bind NGF, these two receptors are endocytosed separately and activate different cellular responses. We hypothesized that receptor localization in membrane rafts may play a role in endocytic sorting. TrkA and p75(NTR) both reside in detergent-resistant membranes (DRMs), yet they responded differently to a variety of conditions. The ganglioside, GM1, caused increased association of NGF, TrkA, and microtubules with DRMs, but a decrease in p75(NTR). When microtubules were induced to polymerize and attach to DRMs by in vitro reactions, TrkA, but not p75(NTR), was bound to microtubules in DRMs and in a detergent-resistant endosomal fraction. NGF enhanced the interaction between TrkA and microtubules in DRMs, yet tyrosine phosphorylated TrkA was entirely absent in DRMs under conditions where activated TrkA was detected in detergent-sensitive membranes and endosomes. These data indicate that TrkA and p75(NTR) partition into membrane rafts by different mechanisms, and that the fraction of TrkA that associates with DRMs is internalized but does not directly form signaling endosomes. Rather, by attracting microtubules to lipid rafts, TrkA may mediate other processes such as axon guidance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号