首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molecular pathway homologous to the S. cerevisiae mitotic exit network (MEN) and S. pombe septation initiation network has recently been described in higher eukaryotes and involves the tumor suppressor kinase LATS1 and its subunit MOB1A. The yeast MEN/septation initiation network pathways are regulated by the ubiquitin ligase defective in mitotic arrest 1 (Dma1p), a checkpoint protein that helps maintain prometaphase arrest when cells are exposed to microtubule poisons. We identified here the RING domain protein ring finger 8 (RNF8) as the human orthologue of the yeast protein Dma1p. Like its yeast counterparts, human DMA1/RNF8 localized at the midbody and its depletion by siRNA compromised mitotic arrest of nocodazole-treated cells in a manner dependent on the MEN. Depletion of MAD2, a spindle checkpoint protein, also compromised mitotic arrest, but in a MEN-independent manner. Thus, two distinct checkpoint pathways maintain mitotic arrest in cells exposed to microtubule poisons.  相似文献   

2.
Amin MA  Matsunaga S  Uchiyama S  Fukui K 《FEBS letters》2008,582(27):3839-3844
Nucleophosmin (NPM) is an abundantly expressed multifunctional nucleolar phosphoprotein. Here we show that depletion of NPM by RNA interference causes defects in cell division, followed by an arrest of DNA synthesis due to activation of a p53-dependent checkpoint response in HeLa cells. Depletion of NPM leads to mitotic arrest due to spindle checkpoint activation. The mitotic cells arrested by NPM depletion have defects in chromosome congression, proper mitotic spindle and centrosome formation, as well as defects in kinetochore-microtubule attachments. Loss of NPM thus causes severe mitotic defects and delayed mitotic progression. These findings indicate that NPM is essential for mitotic progression and cell proliferation.  相似文献   

3.
For gastric cancers, the antineoplastic activity of cannabinoids has been investigated in only a few reports and knowledge regarding the mechanisms involved is limited. We have reported previously that treatment of gastric cancer cells with a cannabinoid agonist significantly decreased cell proliferation and induced apoptosis. Here, we evaluated the effects of cannabinoids on various cellular mediators involved in cell cycle arrest in gastric cancer cells. AGS and MKN-1 cell lines were used as human gastric cancer cells and WIN 55,212-2 as a cannabinoid agonist. Cell cycles were analyzed by flow cytometry and western blotting. Treatment with WIN 55,212-2 arrested the cell cycle in the G0/G1 phase. WIN 55,212-2 also upregulated phospho-ERK1/2, induced Kip1/p27 and Cip1/WAF1/p21 expression, decreased cyclin D1 and cyclin E expression, decreased Cdk 2, Cdk 4, and Cdk 6 expression levels, and decreased phospho-Rb and E2F-1 expression. ERK inhibitor decreased the proportion of G0/G1 phase which was induced by WIN 55,212-2. Inhibition of pAKT led to cell cycle arrest in gastric cancer cells. Cell cycle arrest preceded apoptotic response. Thus, this cannabinoid agonist can reduce gastric cancer cell proliferation via G1 phase cell cycle arrest, which is mediated via activation of the MAPK pathway and inhibition of pAKT.  相似文献   

4.
The tumour suppressor gene RASSF1A is frequently silenced in lung cancer and other sporadic tumours as a result of hypermethylation of a CpG island in its promoter. However, the precise mechanism by which RASSF1A functions in cell cycle regulation and tumour suppression has remained unknown. Here we show that RASSF1A regulates the stability of mitotic cyclins and the timing of mitotic progression. RASSF1A localizes to microtubules during interphase and to centrosomes and the spindle during mitosis. The overexpression of RASSF1A induced stabilization of mitotic cyclins and mitotic arrest at prometaphase. RASSF1A interacts with Cdc20, an activator of the anaphase-promoting complex (APC), resulting in the inhibition of APC activity. Although RASSF1A does not contribute to either the Mad2-dependent spindle assembly checkpoint or the function of Emi1 (ref. 1), depletion of RASSF1A by RNA interference accelerated the mitotic cyclin degradation and mitotic progression as a result of premature APC activation. It also caused a cell division defect characterized by centrosome abnormalities and multipolar spindles. These findings implicate RASSF1A in the regulation of both APC-Cdc20 activity and mitotic progression.  相似文献   

5.
Acquired resistance to cytotoxic antineoplastic agents is a major clinical challenge in tumor therapy; however, the mechanisms involved are still poorly understood. In this study, we show that knockdown of CtIP, a corepressor of CtBP, promotes cell proliferation and alleviates G2/M phase arrest in etoposide (Eto)-treated HCT116 cells. Although the expression of p21 and growth arrest and DNA damage inducible α (GADD45a), which are important targets of p53, was downregulated in CtIP-deficient HCT116 cells, p53 deletion did not affect G2/M arrest after Eto treatment. In addition, the phosphorylation levels of Ser317 and Ser345 in Chk1 and of Ser216 in CDC25C were lower in CtIP-deficient HCT116 cells than in control cells after Eto treatment. Our results indicate that CtIP may enhance cell sensitivity to Eto by promoting G2/M phase arrest, mainly through the ATR-Chk1-CDC25C pathway rather than the p53-p21/GADD45a pathway. The expression of CtIP may be a useful biomarker for predicting the drug sensitivity of colorectal cancer cells.  相似文献   

6.
RNF7 has been reported to play critical roles in various cancers. However, the underlying mechanisms of RNF7 in glioma development remain largely unknown. Herein, the expression level of RNF7 was examined in tissues by quantitative real-time PCR, Western blotting and immunohistochemistry. The effect of RNF7 on glioma progression was measured by performing CCK-8 and apoptosis assays, cell cycle-related experiments and animal experiments. The effect of RNF7 on PI3K/AKT signalling pathway was tested by Western blotting. First, we found that RNF7 was upregulated in tumour tissue compared with normal brain tissue, especially in high-grade glioma, and the high expression of RNF7 was significantly related to tumour size, Karnofsky Performance Scale score and a poor prognosis. Second, RNF7 overexpression facilitated tumour cell cycle progression and cell proliferation and suppressed apoptosis. Conversely, RNF7 knockdown suppressed tumour cell cycle progression and cell proliferation and facilitated apoptosis. Furthermore, follow-up mechanistic studies indicated that RNF7 could facilitate glioma cell proliferation and cell cycle progression and inhibit apoptosis by activating the PI3K/AKT signalling pathway. This study shows that RNF7 can clearly promote glioma cell proliferation by facilitating cell cycle progression and inhibiting apoptosis by activating the PI3K/AKT signalling pathway. Targeting the RNF7/PI3K/AKT axis may provide a new perspective on the prevention or treatment of glioma.  相似文献   

7.
RASSF1C is a major isoform of the RASSF1 gene, and is emerging as an oncogene. This is in contradistinction to the RASSF1A isoform, which is an established tumor suppressor. We have previously shown that RASSF1C promotes lung cancer cell proliferation and have identified RASSF1C target genes with growth promoting functions. Here, we further report that RASSF1C promotes lung cancer cell migration and enhances lung cancer cell tumor sphere formation. We also show that RASSF1C over-expression reduces the inhibitory effects of the anti-cancer agent, betulinic acid (BA), on lung cancer cell proliferation. In previous work, we demonstrated that RASSF1C up-regulates piwil1 gene expression, which is a stem cell self-renewal gene that is over-expressed in several human cancers, including lung cancer. Here, we report on the effects of BA on piwil1 gene expression. Cells treated with BA show decreased piwil1 expression. Also, interaction of IGFBP-5 with RASSF1C appears to prevent RASSF1C from up-regulating PIWIL1 protein levels. These findings suggest that IGFBP-5 may be a negative modulator of RASSF1C/ PIWIL1 growth-promoting activities. In addition, we found that inhibition of the ATM-AMPK pathway up-regulates RASSF1C gene expression.  相似文献   

8.
Growth arrest and DNA damage inducible 45 alpha (GADD45α) is a central player in mediating apoptosis induced by a variety of stress stimuli and genotoxic agents. Regular usage of nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin and sulindac is associated with reduced risk for various cancers, including colon cancer. The role of GADD45α in NSAID-induced colon cancer cell cytotoxicity is unknown. In this study, we report that indomethacin and sulindac sulfide treatments up-regulate GADD45α mRNA expression and protein levels in colon cancer HT-29, RKO and Caco-2 cells. This up-regulation of GADD45α is accompanied by necrotic cell death and apoptosis. Anti-sense suppression of GADD45α expression inhibited indomethacin and sulindac sulfide-induced necrotic cell death and apoptosis. These findings confirm a role for GADD45α in NSAID-induced cytotoxicity, a mechanism for the anti-neoplastic effect of NSAIDs in colon tumorigenesis and cancer growth.  相似文献   

9.
10.
Ring finger protein 2 (RNF2), as a well-known E3 ligase, has an oncogenic role in various cancers. The role of RNF2 in colon cancer is still unknown. The aim of this work is to determine the biological role of RNF2 in colon cancer. We first examined the expression of RNF2 and interferon regulatory factor 4 (IRF4) in colon cancer patients and colon cancer cell lines (SW480 and HCT116). Compared with normal tumor-adjacent tissues, RNF2 was up-regulated whereas IRF4 was down-regulated in the colon cancer tissues. RNF2 was also up-regulated in colon cancer cells with respect to human fetal colon epithelial cells. RNF2 overexpression enhanced the ability of proliferation, migration and invasion of SW480 cells, whereas RNF2 knockdown caused an opposite result in HCT116 cells. Furthermore, a tumor xenograft model was constructed to verify the impact of RNF2 overexpressed-SW480 cells on tumor growth. RNF2 up-regulation elevated Ki-67 proliferation index, accelerated the growth of tumor tissues, and led to severe colon tissue damage in the tumor xenograft mice. In addition, RNF2 interacted with IRF4, and repressed IRF4 protein expression. IRF4 was a substrate of RNF2, and RNF2 promoted the ubiquitination and degradation of IRF4. RNF2 overexpression increased the ability of proliferation, migration and invasion in SW480 cells by promoting the ubiquitination and degradation of IRF4. In conclusion, this work demonstrated that RNF2 promoted tumor growth in colon cancer by regulating ubiquitination and degradation of IRF4. Thus, RNF2 may be served as a potential therapeutic target for colon cancer.  相似文献   

11.
12.
13.
14.
Recently, the Ras association domain family 1 gene (RASSF1) has been identified as a Ras effector encoding two major mRNA forms, RASSF1A and RASSF1C, derived by alternative promoter selection and alternative mRNA splicing. RASSF1A is a tumor suppressor gene. However, the function of RASSF1C, both in normal and cancer cells, is still unknown. To learn more about the function of RASSF1C in human cancer cells, we tested the effect of silencing RASSF1C mRNA with small interfering RNA on lung cancer cells (NCI H1299) that express RASSF1C but not RASSF1A. Small interfering RNA specific for RASSF1C reduced RASSF1C mRNA levels compared with controls. This reduction in RASSF1C expression caused a significant decrease in lung cancer cell proliferation. Furthermore, overexpression of RASSF1C increased cell proliferation in lung cancer cells. Finally, we found that RASSF1C, unlike RASSF1A, does not upregulate N-cadherin 2 and transglutaminase 2 protein expression in NCI H1299 lung cancer cells. This suggests that RASSF1C and RASSF1A have different effector targets. Together, our findings suggest that RASSF1C, unlike RASSF1A, is not a tumor suppressor but rather stimulates lung cancer cell proliferation.  相似文献   

15.
Regulation of cell cycle progression involves redox (oxidation-reduction)-dependent modification of proteins including the mitosis-inducing phosphatase Cdc25C. The role of vitamin C (ascorbic acid, ASC), a known modulator of the cellular redox status, in regulating mitotic entry was investigated in this study. We demonstrated that vitamin C inhibits DNA synthesis in HeLa cells and, mainly the form of dehydroascorbic acid (DHA), delays the entry of p53-deficient synchronized HeLa and T98G cancer cells into mitosis. High concentrations of Vitamin C caused transient S and G2 arrest in both cell lines by delaying the activation of the M-phase promoting factor (MPF), Cdc2/cyclin-B complex. Although vitamin C did not inhibit the accumulation of cyclin-B1, it may have increased the level of Cdc2 inhibitory phosphorylation. This was achieved by transiently maintaining Cdc25C, the activator of Cdc2, both in low levels and in a phosphorylated on Ser216 inactive form that binds to 14-3-3 proteins contributing thus to the nuclear exclusion of Cdc25C. As expected, vitamin C prevented the nuclear accumulation of Cdc25C in both cell lines. In conclusion, it seems that vitamin C induces transient cell cycle arrest, at least in part, by delaying the accumulation and the activation of Cdc25C.  相似文献   

16.
1,25-Dihydroxyvitamin D3 suppresses the growth of multiple human cancer cell lines by inhibiting cell cycle progression and inducing cell death. The present study showed that 1,25-dihydroxyvitamin D3 causes cell cycle arrest at the G2/M transition through p53-independent induction of GADD45 in ovarian cancer cells. Detailed analyses have established GADD45 as a primary target gene for 1,25-dihydroxyvitamin D3. A DR3-type vitamin D response element was identified in the fourth exon of GADD45 that forms a complex with the vitamin D receptor.retinoid X receptor heterodimer in electrophoresis mobility shift assays and mediates the dose-dependent induction of luciferase activity by 1,25-dihydroxyvitamin D3 in reporter assays. Chromatin immunoprecipitation assays have shown that the vitamin D receptor is recruited in a ligand-dependent manner to the exonic enhancer but not to the GADD45 promoter regions. In ovarian cancer cells expressing GADD45 antisense cDNA or GADD45-null mouse embryo fibroblasts, 1,25-dihydroxyvitamin D3 failed to induce G2/M arrest. Taken together, these results identify GADD45 as an important mediator for the tumor-suppressing activity of 1,25-dihydroxyvitamin D3 in human ovarian cancer cells.  相似文献   

17.
18.
19.
20.
ABSTRACT: BACKGROUND: RASSF1A and RASSF1C are two major isoforms encoded by the Ras association domain family 1 (RASSF1) gene through alternative promoter selection and mRNA splicing. RASSF1A is a well established tumor suppressor gene. Unlike RASSF1A, RASSF1C appears to have growth promoting actions in lung cancer. In this article, we report on the identification of novel RASSF1C target genes in non small cell lung cancer (NSCLC). METHODS: Over-expression and siRNA techniques were used to alter RASSF1C expression in human lung cancer cells, and Affymetrix-microarray study was conducted using NCI-H1299 cells over-expressing RASSF1C to identify RASSF1C target genes. RESULTS: The microarray study intriguingly shows that RASSF1C modulates the expression of a number of genes that are involved in cancer development, cell growth and proliferation, cell death, and cell cycle. We have validated the expression of some target genes using qRT-PCR. We demonstrate that RASSF1C over-expression increases, and silencing of RASSF1C decreases, the expression of PIWIL1 gene in NSCLC cells using qRT-PCR, immunostaining, and Western blot analysis. We also show that RASSF1C over-expression induces phosphorylation of ERK1/2 in lung cancer cells, and inhibition of the MEK-ERK1/2 pathway suppresses the expression of PIWIL1 gene expression, suggesting that RASSF1C may exert its activities on some target genes such as PIWIL1 through the activation of the MEK-ERK1/2 pathway. Also, PIWIL1 expression is elevated in lung cancer cell lines compared to normal lung epithelial cells. CONCLUSIONS: Taken together, our findings provide significant data to propose a model for investigating the role of RASSF1C/PIWIL1 proteins in initiation and progression of lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号