首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibiting cancer metabolism via glutaminase (GAC) is a promising strategy to disrupt tumor progression. However, mechanism regarding GAC acetylation remains mostly unknown. In this study, we demonstrate that lysine acetylation is a vital post-translational modification that inhibits GAC activity in non-small cell lung cancer (NSCLC). We identify that Lys311 is the key acetylation site on GAC, which is deacetylated by HDAC4, a class II deacetylase. Lys311 acetylation stimulates the interaction between GAC and TRIM21, an E3 ubiquitin ligase of the tripartite motif (TRIM) family, therefore promoting GAC K63-linked ubiquitination and inhibiting GAC activity. Furthermore, GACK311Q mutation in A549 cells decreases cell proliferation and alleviates tumor malignancy. Our findings reveal a novel mechanism of GAC regulation by acetylation and ubiquitination that participates in non-small cell lung cancer tumorigenesis.  相似文献   

2.
Cancer-associated fibroblasts (CAFs) are one of the most enriched components of Hepatocellular carcinoma (HCC) microenvironment, which are tightly related to the metastasis and invasion of HCC. We identified a mechanism by which CAF-derived chemokine CCL5 enhanced HCC metastasis by triggering the HIF1α/ZEB1 axis. We demonstrated that CAFs derived from HCC tissues promoted the migration and invasion of HCC cells and facilitated metastasis to the lung of NOD/SCID mice. Then the chemokine antibody array elucidated the higher chemokine CCL5 level secreted by CAFs than by paracancerous tissue fibroblasts (PTFs). Mechanistically, we found that CAF-derived CCL5 inhibited the ubiquitination and degradation of hypoxia-inducible factor 1 alpha (HIF1α) by binding to specific receptors, maintained HIF1α under normoxia, thereby up-regulated the downstream gene zinc finger enhancer-binding protein 1 (ZEB1) and induced epithelial-mesenchymal transition (EMT), ultimately validating its ability to promote lung metastasis of HCC. And this novel mechanism may have association with poor prognosis. Taken together, targeting CAF-derived CCL5 mediated HIF1α/ZEB1 cascade possibly propose a new therapeutic route for HCC.Subject terms: Stem cells, Cancer microenvironment  相似文献   

3.
HPK1, a member of mammalian Ste20-like serine/threonine kinases, is lost in >95% pancreatic cancer through proteasome-mediated degradation. However, the mechanism of HPK1 loss has not been defined. The aims of this study are to identify the ubiquitin ligase and to examine the mechanisms that targets HPK1 degradation. We found that the CUL7/Fbxw8 ubiquitin ligase targeted HPK1 for degradation via the 26 S proteasome. The ubiquitination of HPK1 required its kinase activity and autophosphorylation. Wild-type protein phosphatase 4 (PP4), but not the phosphatase-dead PP4 mutant, PP4-RL, inhibits the interaction of Fbxw8 with HPK1 and Fbxw8-mediated ubiquitination of HPK1. In addition, we showed that Thr-355 of HPK1 is a key PP4 dephosphorylation site, through which CUL7/Fbxw8 ubiquitin ligase and PP4 regulates HPK1 stability. Knockdown of Fbxw8 restores endogenous HPK1 protein expression and inhibits cell proliferation of pancreatic cancer cells. Our study demonstrated that targeted degradation of HPK1 by the CUL7/Fbxw8 ubiquitin ligase constitutes a negative-feedback loop to restrain the activity of HPK1 and that CUL7/Fbxw8 ubiquitin ligase promotes pancreatic cancer cell proliferation. CUL7/Fbxw8 ubiquitin ligase-mediated HPK1 degradation revealed a direct link and novel role of CUL7/Fbxw8 ubiquitin ligase in the MAPK pathway, which plays a critical role in cell proliferation and differentiation.  相似文献   

4.
The deubiquitinating enzyme USP2a has shown oncogenic properties in many cancer types by impairing ubiquitination of FASN, MDM2, MDMX or Aurora A. Aberrant expression of USP2a has been linked to progression of human tumors, particularly prostate cancer. However, little is known about the role of USP2a or its mechanism of action in bladder cancer. Here, we provide evidence that USP2a is an oncoprotein in bladder cancer cells. Enforced expression of USP2a caused enhanced proliferation, invasion, migration and resistance to several chemotherapeutic reagents, while USP2a loss resulted in slower proliferation, greater chemosensitivity and reduced migratory/invasive capability compared with control cells. USP2a, but not a catalytically inactive mutant, enhanced proliferation in immortalized TRT-HU1 normal human bladder epithelial cells. USP2a bound to cyclin A1 and prevented cyclin A1 ubiquitination, leading to accumulation of cyclin A1 by a block in degradation. Enforced expression of wild type USP2a, but not an inactive USP2a mutant, resulted in cyclin A1 accumulation and increased cell proliferation. We conclude that USP2a impairs ubiquitination and stabilizes an important cell cycle regulator, cyclin A1, raising the possibility of USP2a targeting as a therapeutic strategy against bladder tumors in combination with chemotherapy.  相似文献   

5.
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is a key player in tumorigenesis of non–small cell lung cancer (NSCLC) and was recently found to be inactivated by tripartite motif containing 25 (TRIM25)–mediated K63-linked polyubiquitination. However, the deubiquitinase (Dub) coordinate TRIM25 in PTEN ubiquitination is still elusive. In the present study, we found that this K63-linked polyubiquitination could be ablated by the ubiquitin-specific protease 10 (USP10) in a screen against a panel of Dubs. We found using coimmununoprecipitation/immunoblotting that USP10 interacted with PTEN and reduced the K63-linked polyubiquitination of PTEN mediated by TRIM25 in NSCLC cells. Moreover, USP10, but not its inactive C424A deubiquitinating mutant or other Dubs, abolished PTEN from K63-linked polyubiquitination mediated by TRIM25. In contrast to TRIM25, USP10 restored PTEN phosphatase activity and reduced the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate, thereby inhibiting AKT/mammalian target of rapamycin progrowth signaling transduction in NSCLC cells. Moreover, USP10 was downregulated in NSCLC cell lines and primary tissues, whereas TRIM25 was upregulated. Consistent with its molecular activity, re-expression of USP10 suppressed NSCLC cell proliferation and migration, whereas knockout of USP10 promoted NSCLC cell proliferation and migration. In conclusion, the present study demonstrates that USP10 coordinates TRIM25 to modulate PTEN activity. Specifically, USP10 activates PTEN by preventing its K63-linked polyubiquitination mediated by TRIM25 and suppresses the AKT/mammalian target of rapamycin signaling pathway, thereby inhibiting NSCLC proliferation, indicating that it may be a potential drug target for cancer treatment.  相似文献   

6.
The deubiquitinating enzyme USP2a has shown oncogenic properties in many cancer types by impairing ubiquitination of FASN, MDM2, MDMX or Aurora A. Aberrant expression of USP2a has been linked to progression of human tumors, particularly prostate cancer. However, little is known about the role of USP2a or its mechanism of action in bladder cancer. Here, we provide evidence that USP2a is an oncoprotein in bladder cancer cells. Enforced expression of USP2a caused enhanced proliferation, invasion, migration and resistance to several chemotherapeutic reagents, while USP2a loss resulted in slower proliferation, greater chemosensitivity and reduced migratory/invasive capability compared with control cells. USP2a, but not a catalytically inactive mutant, enhanced proliferation in immortalized TRT-HU1 normal human bladder epithelial cells. USP2a bound to cyclin A1 and prevented cyclin A1 ubiquitination, leading to accumulation of cyclin A1 by a block in degradation. Enforced expression of wild-type USP2a, but not an inactive USP2a mutant, resulted in cyclin A1 accumulation and increased cell proliferation. We conclude that USP2a impairs ubiquitination and stabilizes an important cell cycle regulator, cyclin A1, raising the possibility of USP2a targeting as a therapeutic strategy against bladder tumors in combination with chemotherapy.Key words: USP2a, cyclin A1, bladder cancer, cisplatin resistance, deubiquitination  相似文献   

7.
8.
9.
10.
11.
SMAD4 is a common intracellular effector for TGF‐β family cytokines, but the mechanism by which its activity is dynamically regulated is unclear. We demonstrated that ubiquitin‐specific protease (USP) 4 strongly induces activin/BMP signaling by removing the inhibitory monoubiquitination from SMAD4. This modification was triggered by the recruitment of the E3 ligase, SMURF2, to SMAD4 following ligand‐induced regulatory (R)‐SMAD–SMAD4 complex formation. Whereas the interaction of the negative regulator c‐SKI inhibits SMAD4 monoubiquitination, the ligand stimulates the recruitment of SMURF2 to the c‐SKI‐SMAD2 complex and triggers c‐SKI ubiquitination and degradation. Thus, SMURF2 has a role in termination and initiation of TGF‐β family signaling. An increase in monoubiquitinated SMAD4 in USP4‐depleted mouse embryonic stem cells (mESCs) decreased both the BMP‐ and activin‐induced changes in the embryonic stem cell fate. USP4 sustained SMAD4 activity during activin‐ and BMP‐mediated morphogenic events in early zebrafish embryos. Moreover, zebrafish depleted of USP4 exhibited defective cell migration and slower coordinated cell movement known as epiboly, both of which could be rescued by SMAD4. Therefore, USP4 is a critical determinant of SMAD4 activity.  相似文献   

12.
Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.  相似文献   

13.
The great importance of long noncoding RNAs (lncRNAs) has been acknowledged in tumorigenesis gradually. LncRNA LINC01857 is a novel lncRNA and has been reported to promote breast cancer progression. However, the biological roles of LINC01857 in glioma are not explored. In the present research, LINC01857 levels were found to be upregulated in glioma. In addition, LINC01857 expression is negatively correlated with survival rate in glioma patients. Functional investigation revealed that LINC01857 downregulation impaired glioma proliferation and invasiveness. Furthermore, LINC01857 knockdown led to repressed growth of glioma in vivo. We found that LINC01857 could be a sponge for miR-1281 and inhibits its level to upregulate TRIM65 expression. What's more, we showed that miR-1281 mimics also attenuated tumor cell proliferation, migration, and invasion. And rescue assays demonstrated that LINC01857 promotes glioma progression through modulating miR-1281/TRIM65 pathway. Collectively, this study first demonstrated that a novel LINC01857/miR-1281/TRIM65 signaling regulates glioma progression.  相似文献   

14.
Long non-coding RNAs (lncRNAs) play a crucial role in macrophage development but little is known about their role in asthma. Here, we investigated the role of lncRNA lncTRPM2-AS in asthma and found that lncTRPM2-AS participates in the promotion of macrophage inflammation. Downregulation of lncTRPM2-AS promoted apoptosis and inhibited proliferation and production of cytokines including IL-1β, IL-4, IL-6, IL-10, TNF-α, and TGF-β. RNA-immunoprecipitation and mass spectrometry indicated that the protein TRPM2 interacted with both lncTRPM2-AS and the E3 ubiquitin ligase TRIM21. LncTRPM2-AS silencing enhanced the interaction between TRIM21 and TRPM2, resulting in elevated levels of ubiquitin-related degradation of TRPM2. Mutation analysis indicated that TRPM2 K1218 is a key site for TRIM21-dependent ubiquitination. Downregulation of lncTRPM2-AS significantly decreased intracellular calcium levels by restraining TRPM2 protein expression, which in turn decreased ROS levels and increased autophagy to promote macrophage apoptosis and reduce cytokine production, together inhibiting macrophage inflammation. Taken together, our findings demonstrate that lncTRPM2-AS blocks the ubiquitination of TRPM2 via TRIM21 and inhibits autophagy-induced apoptosis which may contribute to macrophage inflammation in asthma.Subject terms: Immune cell death, Respiratory tract diseases  相似文献   

15.
RNA-binding protein LIN28A is often highly expressed in human malignant tumors and is involved in tumor metastasis and poor prognosis. Knowledge about post-translational regulatory mechanisms governing LIN28A protein stability and function is scarce. Here, we investigated the role of ubiquitination and deubiquitination on LIN28A protein stability and report that LIN28A protein undergoes ubiquitination. Ubiquitin-specific protease 28 (USP28), a deubiquitinating enzyme, interacts with and stabilizes LIN28A protein to extend its half-life. USP28, through its deubiquitinating activity, antagonizes LIN28A protein turnover by reversing its proteasomal degradation. Our study describes the consequential impacts of USP28-mediated stabilization of LIN28A protein on enhancing cancer cell viability, migration and ultimately augmenting LIN28A-mediated tumor progression. Overall, our data suggest that a synergistic, combinatorial approach of targeting LIN28A with USP28 would contribute to effective cancer therapeutics.  相似文献   

16.
Lung adenocarcinoma (LAD) is a common malignancy; however, its underlying molecular mechanism is unclear. Circular RNAs (circRNAs) serve as significant cancer regulators. The overexpression of circRAPGEF5 in LAD tissues and cells indicated that it may be involved in promoting LAD progression. Analysis of 61 LAD tissues revealed that circRAPGEF5 was related to lymph node metastasis. Functionally, circRAPGEF5 promoted the proliferation, migration, invasion, and epithelial-mesenchymal transition of LAD cells in vitro and promoted LAD cells growth in vivo. Mechanistically, dual-luciferase reporter assays confirmed direct interaction of circRAPGEF5, miR-1236-3p, and ZEB1. miR-1236-3p was upregulated and ZEB1 expression reduced after circRAPGEF5 knockdown, and the proliferation, migration, and invasion of LAD cells was inhibited. circRAPGEF5 was significantly overexpressed in LAD cell exosomes, and co-culture experiments showed that exosomal circRAPGEF5 enhanced the metastatic ability of LAD cells. Further experiments found that serum exosomal circRAPGEF5 was overexpressed in LAD; moreover, the area under the receiver operator characteristic curve of exosomal circRAPGEF5 was superior to that of serum carcinoembryonic antigen (CEA). Jointly detected serum exosomal circRAPGEF5 and serum CEA had better diagnostic performance than when detected individually. Thus, exosomal circRAPGEF5 could promote the proliferation and metastasis of LAD via the miR-1236-3p/ZEB1 axis and serum exosomal circRAPGEF5 may serve as a promising biomarker for LAD.  相似文献   

17.
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.  相似文献   

18.
Overexpression of Flap endonuclease 1 (FEN1) has been previously implicated in hepatocellular carcinoma (HCC), while its expression features and mechanisms remain unclear. In the current study, differential expression genes (DEGs) were screened in HCC tissues and normal liver tissues in 4 Gene Expression Omnibus (GEO) datasets. FEN1, one of the hub co-overexpressed genes, was further determined overexpressed in HCC tissues in TCGA, local HCC cohorts, and hepatocarcinogenesis model. In addition, high expression of FEN1 indicated poor prognosis of HCC patients. Loss-of-function and gain-of-function assays demonstrated that FEN1 enhanced the proliferation, cell cycle phage transition, migration/ invasion, therapy resistance, xenograft growth, and epithelial-mesenchymal transition (EMT) process of HCC cells. Mechanically, FEN1 could inactivate P53 signaling by preventing the ubiquitination and degradation of mouse double minute 2 (MDM2) via recruiting ubiquitin-specific protease 7 (USP7). Interfering USP7 with P22077 significantly reversed the malignant phenotypes activated by FEN1. In conclusion, this study suggests FEN1 as a robust prognostic biomarker and potential target for HCC.  相似文献   

19.
Neuroblastoma is one of the most severe malignant tumors and accounts for substantial cancer-related mortality in children. Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is highly expressed in various cancers and acts as an important biomarker of poor prognosis. The ablation of G3BP1 inhibited the proliferation and migration of human SHSY5Y cells. Because of its important role in neuroblastoma, the regulation of G3BP1 protein homeostasis was probed. TRIM25, which belongs to the tripartite motif (TRIM) family of proteins, was identified as an interacting partner for G3BP1 using the yeast two-hybrid (Y2H) method. TRIM25 mediates the ubiquitination of G3BP1 at multiple sites and stabilizes its protein level. Then, our study found that TRIM25 knockdown also inhibited the proliferation and migration of neuroblastoma cells. The TRIM25 and G3BP1 double knockdown SHSY5Y cell line was generated, and double knockdown cells exhibited lower proliferation and migration ability than cells with only TRIM25 or G3BP1 knockdown. Further study demonstrated that TRIM25 promotes the proliferation and migration of neuroblastoma cells in a G3BP1-dependent manner. Tumor xenograft assays indicated that the ablation of TRIM25 and G3BP1 synergistically suppressed the tumorigenicity of neuroblastoma cells in nude mice, and TRIM25 promoted the tumorigenicity of G3BP1 intact SHSY5Y cells but not G3BP1 knockout cells. Thus, TRIM25 and G3BP1, two oncogenic genes, are suggested as potential therapeutic targets for neuroblastoma.  相似文献   

20.
Neddylation is a posttranslational modification that attaches ubiquitin-like protein Nedd8 to protein targets via Nedd8-specific E1-E2-E3 enzymes and modulates many important biological processes. Nedd8 attaches to a lysine residue of a substrate, not for degradation, but for modulation of substrate activity. We previously identified the HECT-type ubiquitin ligase Smurf1, which controls diverse cellular processes, is activated by Nedd8 through covalent neddylation. Smurf1 functions as a thioester bond-type Nedd8 ligase to catalyze its own neddylation. Numerous ubiquitination substrates of Smurf1 have been identified, but the neddylation substrates of Smurf1 remain unknown. Here, we show that Smurf1 interacts with RRP9, a core component of the U3 snoRNP complex, which is involved in pre-rRNA processing. Our in vivo and in vitro neddylation modification assays show that RRP9 is conjugated with Nedd8. RRP9 neddylation is catalyzed by Smurf1 and removed by the NEDP1 deneddylase. We identified Lys221 as a major neddylation site on RRP9. Deficiency of RRP9 neddylation inhibits pre-rRNA processing and leads to downregulation of ribosomal biogenesis. Consequently, functional studies suggest that ectopic expression of RRP9 promotes tumor cell proliferation, colony formation, and cell migration, whereas unneddylated RRP9, K221R mutant has no such effect. Furthermore, in human colorectal cancer, elevated expression of RRP9 and Smurf1 correlates with cancer progression. These results reveal that Smurf1 plays a multifaceted role in pre-rRNA processing by catalyzing RRP9 neddylation and shed new light on the oncogenic role of RRP9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号