首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the oxyntic mucosa of the mammalian stomach, histamine is stored in ECL cells and in mucosal mast cells. In the rat, at least 80 percent of oxyntic mucosal histamine resides in the ECL cells. Histamine is a key factor in the regulation of gastric acid secretion. Following depletion of ECL-cell histamine by treatment with alpha-fluoromethylhistidine (alpha-FMH), basal acid secretion was reduced, and gastrin-stimulated acid secretion was abolished. Vagally-induced acid secretion (by insulin injection or pylorus ligation) was unaffected by alpha-FMH treatment but inhibited by an H2 antagonist. These results suggest that gastrin stimulates acid secretion via release of ECL-cell histamine, whereas vagally-induced acid secretion--although histamine-dependent--does not rely on ECL-cell histamine. Gastrin is known to have a trophic effect on the oxyntic mucosa. By combining long-term hypergastrinemia with continuous infusion of alpha-FMH, we were able to show that gastrin-evoked trophic effects in the stomach do not depend on ECL-cell histamine.  相似文献   

2.
The localization of cathepsin D-like acid proteinase in the rat stomach and other tissues was studied, and its biochemical properties were compared with those of rat gastric cathepsin D (EC 3.4.23.5). Cathepsin D-like acid proteinase existed overwhelmingly in the mucosal layer and was hardly detected in the gastric juice. Its subcellular distribution profile was very similar to that of acid phosphatase, but not to that of pepsinogen. This proteinase-like enzyme activity was also found in rat splenic extract. These results strongly suggest that the proteinase is a lysosomal enzyme. In addition, cathepsin D-like acid proteinase demonstrated an in vitro transition of molecular species during storage at -30 degrees C. Although this molecular change was distinctive in ion-exchange column chromatography and susceptibility to some enzyme inhibitors, it was not accompanied by a significant decrease in molecular weight. To compare cathepsin D-like acid proteinase with ordinary cathepsin D, gastric cathepsin D was newly purified to apparent homogeneity in polyacrylamide gel electrophoresis. Its biochemical properties demonstrate that this is a true cathepsin D in rat gastric mucosa. Moreover, this cathepsin D activity was not abolished by treatment with antiserum specific to cathepsin D-like acid proteinase or pepsinogen. From these results, we can conclude that the proteinase is a lysosomal acid proteinase different from newly purified gastric cathepsin D.  相似文献   

3.
We previously reported that endogenous nitric oxide (NO) is involved in the peripheral control of gastric acid secretion induced by some secretagogues, and that endogenous NO is involved in the acid secretion process via histamine release from histamine-containing cells. However, the stimulus-secretion coupling in the cells remains to be clarified. In the present study, we investigated the effect of dibutyryl cyclic GMP on gastric acid secretion in mouse isolated stomach and on histamine release in gastric mucosal cells, in comparison with those of dibutyryl cyclic AMP. Dibutyryl cyclic GMP (300 microM) produced a slight but significant increase of gastric acid secretion, which was completely inhibited by the histamine-H2 receptor antagonist famotidine. In contrast, dibutyryl cyclic GMP (1 mM) markedly inhibited histamine-induced acid secretion. Dibutyryl cyclic AMP (100 microM) produced a sustained increase of gastric acid secretion. The pretreatment with famotidine partially inhibited dibutyryl cyclic AMP-induced gastric acid secretion. Dibutyryl cyclic GMP and dibutyryl cyclic AMP significantly increased the histamine release from gastric mucosal cells. These results suggest that both intracellular cyclic GMP and cyclic AMP act as second messengers for histamine release in the histamine-containing cells, probably ECL cells. On the other hand, in gastric parietal cells, cyclic AMP has a stimulatory effect on gastric acid secretion, whereas cyclic GMP has an inhibitory effect.  相似文献   

4.
This study describes anatomical, histological and histochemical features of the digestive tract mucosal layer of the matrinxã Brycon amazonicus, an omnivorous freshwater fish endemic from the Amazon basin. This species presents short thick oesophagus with longitudinal folds, that allow the passage of large food items. The mucosa is lined with a stratified secretory epithelium rich in goblet cells that secrete neutral and acid mucins. The two mucin types provide different viscosity in anterior and posterior oesophagus related to the protective and lubricant functions, respectively. The stomach is a highly distensible Y-shaped saccular organ. Here, it is proposed that this anatomical shape plays an essential role in food storage when food availability is abundant. The stomach mucosa is composed of epithelial cells with intense neutral mucin secretion to protects against gastric juice. The intestine is slightly coiled and presents internally a complex pattern of transversal folds that increases the absorption surface and the retention time of food. Goblet cells in the intestine secrete acid and neutral mucins that lubricate the epithelium and aid in the digestive processes. In the rectum, an increase in goblet cells population occurs that may be related to better lubrication.  相似文献   

5.
6.
Excitatory amino acids (EAAs), in particular,L-aspartate (L-Asp) neurons and their processes, were localized in the rat stomach using a immunohistochemical method with specific antibodies against eitherL-Asp or its synthesizing enzyme, aspartate aminotransferase (AAT). Myenteric ganglia and nerve bundles in the circular muscle and in the longitudinal muscle were found to be AAT-orL-Asp-positive. In addition, AAT- orL-Asp-positive cells were also found in the muscle layer and the deep mucosal layer. The distribution of AAT- orL-Asp-positive cells in both the mucosal and muscle layers was heterogeneous in the stomach. In addition,L-Asp at 10–6 M negligibly influenced acid secretion in an everted preparation of isolated rat stomach. However, according to our results,L-Asp markedly inhibited the histamine-stimulated acid secretion, but not the oxotremorine- or the pentagastrin-stimulated acid secretion. Furthermore,L-Asp also inhibited histamine-induced elevation of cAMP.L-Asp itself did not affect the cAMP level although it elevated the cGMP level in the stomach. Moreover, either (+)2-amino-5-phosphonovaleric acid or (±)3-(2-carboxy-piperazin-4-yl)prophyl-1-phosphonic acid, i.e. two specific antagonists for N-methyl-D-aspartic acid (NMDA) receptors, blocked the inhibitory effect ofL-Asp on histamine-stimulated acid secretion or histamine-induced elevation of cAMP. Since cAMP has been strongly implicated as the second messenger involved in histamine-induced acid secretion, we believe thatL-Asp regulates acid secretion in the stomach by inhibiting histamine release through the NMDA receptors, subsequently lowering the level of cAMP and ultimately reducing acid secretion.  相似文献   

7.
Previous studies have shown that pituitary adenylate cyclase-activating peptide (PACAP) stimulates enterochromaffin-like (ECL) cell histamine release, but its role in the regulation of gastric acid secretion is disputed. This work examines the effect of PACAP-38 on aminopyrine uptake in enriched rat parietal cells and on histamine release and acid secretion in the isolated vascularly perfused rat stomach and the role of PACAP in vagally (2-deoxyglucose) stimulated acid secretion in the awake rat. PACAP has no direct effect on the isolated parietal cell as assessed by aminopyrine uptake. PACAP induces a concentration-dependent histamine release and acid secretion in the isolated stomach, and its effect on histamine release is additive to gastrin. The histamine H2 antagonist ranitidine potently inhibits PACAP-stimulated acid secretion without affecting histamine release. Vagally stimulated acid secretion is partially inhibited by a PACAP antagonist. The results from the present study strongly suggest that PACAP plays an important role in the neurohumoral regulation of gastric acid secretion. Its effect seems to be mediated by the release of ECL cell histamine.  相似文献   

8.
The effects of met-enkephalin and morphine on gastric acid and pepsin secretion and gastric mucosal and total blood flow were studied in anaesthetized dogs with an in vivo chambered secretion stomach preparation. It was found that both agents infused intraarterially caused an increase in histamine-induced acid and pepsin secretion and mucosal and total blood flow. The above responses were significantly blocked by naloxone and nalorphine. In the resting stomach both opiates did not induce secretory changes but they increased mucosal and total blood flow. Met-enkephalin and morphine were also effective after intravenous administration. Met-enkephalin but not morphine fails to stimulate acid secretion if given into the portal vein. The likely mechanism of action of opiates on gastric secretion is discussed and a hypothesis of existence of opiate receptors in the gastric wall is presented.  相似文献   

9.
Our previous report showed gastric mucosal surface pH was determined by alkali secretion at intragastric luminal pH 3 but by acid secretion at intragastric pH 5. Here, we question whether regulation of mucosal surface pH is due to the effect of luminal pH on net acid/base secretions of the whole stomach. Anesthetized rats with a gastric cannula were used, the stomach lumen was perfused with weakly buffered saline, and gastric secretion was detected in the gastric effluent with 1) a flow-through pH electrode and 2) a fluorescent pH-sensitive dye (Cl-NERF). During pH 5 luminal perfusion, both pH sensors reported the gastric effluent was acidic (pH 4.79). After perfusion was stopped transiently (stop-flow), net acid accumulation was observed in the effluent when perfusion was restarted (peak change to pH 4.1-4.3). During pH 3 luminal perfusion, both pH sensors reported gastric effluent was close to perfusate pH (3.0-3.1), but net alkali accumulation was detected at both pH sensors after stop-flow (peak pH 3.3). Buffering capacity of gastric effluents was used to calculate net acid/alkaline secretions. Omeprazole blocked acid secretion during pH 5 perfusion and amplified net alkali secretion during pH 3 perfusion. Pentagastrin elicited net acid secretion under both luminal pH conditions, an effect antagonized by somatostatin. We conclude that in the basal condition, the rat stomach was acid secretory at luminal pH 5 but alkaline secretory at luminal pH 3.  相似文献   

10.
Many studies have implicated F-actin in the regulation of gastric acid secretion using cytochalasin D (CD) to disrupt apical actin filaments in oxyntic cells. However, it is known that CD also affects mucosal permeability by disrupting tight junction structure. Here we investigated the contribution of F-actin to mucosal permeability and acid secretion in the stomach using CD. Stomachs were mounted in Ussing chambers and acid secretion (stimulated or inhibited), transepithelial resistance (TER), mannitol flux, bicarbonate transport, and dual mannitol/sodium fluxes were determined with or without CD. H(+) back diffusion was predicted from its diffusion coefficient. Incubation with CD resulted in a significant reduction in stimulated acid secretion. TER was unchanged in stimulated tissues but significantly reduced in inhibited tissues. Mannitol flux, bicarbonate transport, and H(+)-back diffusion increased significantly with CD. However, the rates of bicarbonate and H(+) flux were not large enough to account for the inhibition of acid secretion. These findings demonstrate that actin filaments regulate paracellular permeability and play an essential role in the regulation of acid secretion in the stomach.  相似文献   

11.
Protective vasodilation in response to tissue injury and acid back diffusion is associated with release of bradykinin in the rat stomach. We hypothesized that bradykinin might be involved in mechanisms behind such vasodilation via influence on mast cells and sensory neurons. Acid back diffusion after mucosal barrier disruption with hypertonic saline evoked degranulation of mast cells in the rat stomach wall. Acid back diffusion was also associated with increased luminal release of histamine and gastric blood flow in normal rats, but not in mast cell-deficient rats. Bradykinin (BK(2)) receptor blockade inhibited degranulation of submucosal mast cells in the stomach and attenuated gastric vasodilation both in response to acid back diffusion and after stimulation of sensory neurons with capsaicin. Gastric vasodilation caused by mucosal injury with hypertonic saline alone was associated with degranulation of mucosal mast cells. These events were unaffected by inhibition of prostaglandin synthesis, whereas bradykinin (BK(2)) receptor blockade was associated with abolished vasodilation and inhibition of mucosal mast cell degranulation. We conclude that bradykinin is involved in gastric vasodilation caused by hypertonic injury alone via influence on mast cells, and by acid back diffusion via influence on both sensory neurons and mast cells.  相似文献   

12.
Gastrin-recognizing CCK2 receptors are expressed in parietal cells and in so-called ECL cells in the acid-producing part of the stomach. ECL cells are endocrine/paracrine cells that produce and store histamine and chromogranin A (CGA)-derived peptides, such as pancreastatin. The ECL cells are the principal cellular transducer of the gastrin-acid signal. Activation of the CCK2 receptor results in mobilization of histamine (and pancreastatin) from the ECL cells with consequent activation of the parietal cell histamine H2 receptor. Thus, release of ECL-cell histamine is a key event in the process of gastrin-stimulated acid secretion. The oxyntic mucosal histidine decarboxylase (HDC) activity and the serum pancreastatin concentration are useful markers for the activity of the gastrin-ECL cell axis. Powerful and selective CCK2 receptor antagonits have been developed from a series of benzodiazepine compounds. These agents are useful tools to study how gastrin controls the ECL cells. Conversely, the close control of ECL cells by gastrin makes the gastrin-ECL cell axis well suited for evaluating the antagonistic potential of CCK2 receptor antagonists with the ECL-cell HDC activity as a notably sensitive and reliable parameter. The CCK2 receptor antagonists YF476, YM022, RP73870, JB93182 and AG041R were found to cause prompt inhibition of ECL-cell histamine and pancreastatin secretion and synthesis. The circulating pancreastatin concentration is raised, was lowered when the action of gastrin on the ECL cells was blocked by the CCK2 receptor antagonists. These effects were associated with inhibition of gastrin-stimulated acid secretion. In addition, sustained receptor blockade was manifested in permanently decreased oxyntic mucosal HDC activity, histamine concentration and HDC mRNA and CGA mRNA concentrations. CCK2 receptor blockade also induced hypergastrinemia, which probably reflects the impaired gastric acid secretion (no acid feedback inhibition of gastrin release). Upon withdrawal of the CCK2 receptor antagonists, their effects on the ECL cells were readily reversible. In conclusion, gastrin mobilizes histamine from the ECL cells, thereby provoking the parietal cells to secrete acid. While CCK2 receptor blockade prevents gastrin from evoking acid secretion, it is without effect on basal and vagally stimulated acid secretion. We conclude that specific and potent CCK2 receptor antagonists represent powerful tools to explore the functional significance of the ECL cells.  相似文献   

13.
Antrum mucosal protein (AMP)-18 is a novel 18-kDa protein synthesized by cells of the gastric antrum mucosa. The protein is present in secretion granules of murine gastric antrum epithelial cells and is a component of canine antrum mucus, suggesting that it is secreted into the viscoelastic gel layer on the mucosal surface. Release of the protein appears to be regulated because forskolin decreased the amount of immunoreactive AMP-18 in primary cultures of canine antrum mucosal epithelial cells, and indomethacin gavaged into the stomach of mice reduced AMP-18 content in antrum mucosal tissue before inducing histological injury. A functional domain of the protein was identified by preparing peptides derived from the center of human AMP-18. A 21-mer peptide stimulated growth of gastric and intestinal epithelial cells, but not fibroblasts, and increased restitution of scrape-wounded gastric epithelial monolayers. These functions of AMP-18 suggest that its release onto the apical cell surface is regulated and that the protein and/or peptide fragments may protect the antral mucosa and promote healing by facilitating restitution and proliferation after injury.  相似文献   

14.
鳜鱼消化道黏液细胞和6种酶的组织化学定位   总被引:1,自引:0,他引:1  
采用阿利新蓝-过碘酸雪夫氏(AB-PAS)染色和酶组织化学方法对鳜鱼消化道各部位黏液细胞和6种酶的分布与定位进行了研究。结果显示,黏液细胞可为分为4种类型,食道黏液细胞多数为Ⅲ型和Ⅳ型,未见Ⅰ型和Ⅱ型;胃贲门和胃幽门黏膜上皮仅有Ⅰ型黏液细胞;胃体黏膜上皮则以Ⅲ型细胞为主;幽门盲囊中主要为Ⅱ型细胞;前肠和中肠中Ⅳ型黏液细胞最多,Ⅰ型最少;后肠黏液细胞则以Ⅳ型和Ⅱ型为主。酸性磷酸酶(ACP)主要分布于幽门盲囊和前肠的黏膜上皮;碱性磷酸酶(ALP)主要分布于食道、幽门盲囊和整个肠道黏膜上皮;非特异性酯酶(NSE)主要分布于胃幽门、中肠和后肠黏膜上皮;过氧化物酶(POX)在胃幽门黏膜上皮中活性较高;琥珀酸脱氢酶(SDH)主要分布于胃腺中;腺苷三磷酸酶(ATPase)在消化道各部位均有较多分布。鳜鱼消化道黏液细胞和酶的分布型与其它动物有相似之处,也有其一定的特异性,与消化道不同部位的消化吸收机能相适应。  相似文献   

15.
Phytohaemagglutinin (PHA), a kidney bean lectin, is known for its binding capability to the small intestinal surface. There has been no data available, however, on the biological activity of PHA in the stomach. Recent observations indicate that PHA is able to attach to gastric mucosal and parietal cells. Therefore, we examined whether PHA affects gastric acid and pepsin secretion in rats. Rats were surgically prepared with chronic stainless steel gastric cannula and with indwelling polyethylene jugular vein catheter. During experiments, animals were slightly restrained. Gastric acid secretion was collected in 30 min periods. Acid secretion was determined by titration of the collected gastric juice with 0.02 N NaOH to pH 7.0. Pepsin activity was estimated by measuring enzymatic activity. Saline, pentagastrin and histamine were infused intravenously. PHA or bovine serum albumin (BSA) were dissolved in saline and given intragastrically through the gastric cannula. PHA significantly inhibited basal acid secretion. Inhibition of acid output reached 72% during the first collection period following PHA administration when compared, then gradually disappeared. Pentagastrin-stimulated acid secretion was repressed dose-dependently by PHA as well. Maximal inhibition was observed during the first 30 min following application of PHA. Histamine-stimulated acid secretion was inhibited by PHA in a similar manner. Pepsin secretion was not affected by PHA under either basal or stimulated conditions. These results provide evidence that PHA is a potent inhibitor of gastric acid secretion in conscious rats, but it does not affect pepsin output from the stomach.  相似文献   

16.
Histological and ultrastructural investigations of the stomach of the catfish Hypostomus plecostomus show that its structure is different from that typical of the stomachs of other teleostean fishes: the wall is thin and transparent, while the mucosal layer is smooth and devoid of folds. The epithelium lining the whole internal surface of the stomach consists of several types of cells, the most prominent being flattened respiratory epithelial cells. There are also two types of gastric gland cells, three types of endocrine cells (EC), and basal cells. The epithelial layer is underlain by capillaries of a diameter ranging from 6.1-13.1 microm. Capillaries are more numerous in the anterior part of the stomach, where the mean number of capillary sections per 100 microm of epithelium length is 4, compared with 3 in the posterior part. The cytoplasm of the epithelial cells, apart from its typical organelles, contains electron-dense and lamellar bodies at different stages of maturation, which form the sites of accumulation of surfactant. Small, electron-dense vesicles containing acidic mucopolysaccharides are found in the apical parts of some respiratory epithelial cells. Numerous gastric glands (2 glands per 100 microm of epithelium length), composed of two types of pyramidal cells, extend from the surface epithelium into the subjacent lamina propria. The gland outlets, as well as the apical cytoplasm of the cells are Alcian blue-positive, indicating the presence of acidic mucopolysaccharides. Zymogen granules have not been found, but the apical parts of cells contain vesicles of variable electron density. The cytoplasm of the gastric gland cells also contains numerous electron-dense and lamellar bodies. Gastric gland cells with electron-dense cytoplasm and tubulovesicular system are probably involved in the production of hydrochloric acid. Fixation with tannic acid as well as with ruthenium red revealed a thin layer of phospholipids and glycosaminoglycans covering the entire inner surface of the stomach. In regions of the epithelium where the capillaries are covered by the thin cytoplasmic sheets of the respiratory epithelial cells, a thin air-blood barrier (0.25-2.02 microm) is formed, thus enabling gaseous exchange. Relatively numerous pores closed by diaphragms are seen in the endothelium lining the apical and lateral parts of the capillaries. Between gastric gland cells, solitary, noninnervated endocrine cells (EC) of three types were found. EC are characterized by lighter cytoplasm than the surrounding cells and they contain dense core vesicles (DCV) with a halo between the electron-dense core and the limiting membrane. EC of type I are the most abundant. They are of an open type, reaching the stomach lumen. The round DCV of this type, with a diameter from 92-194 nm, have a centrally located core surrounded by a narrow halo. EC of type II are rarely observed and are of a closed type. They possess two kinds of DCV with a very narrow halo. The majority of them are round, with a diameter ranging from 88-177 nm, while elongated ones, 159-389 nm long, are rare. EC of type III are numerous and also closed. The whole cytoplasm is filled with large DCV: round, with a diameter from 123-283 nm, and oval, 230-371 nm long, both with a core of irregular shape and a wide, irregular halo. EC are involved in the regulation of digestion and probably local gas exchange. In conclusion, the thin-walled stomach of Hypostomus plecostomus, with its rich network of capillaries, has a morphology suggesting it is an efficient organ for air breathing.  相似文献   

17.
Summary An immunocytochemical study by light- and electron microscopy using the antibody against rat hepatic fatty acid-binding protein (FABP) revealed the brush cells in the gastric epithelium of rats to be intensely immunoreactive. The immunoreactive cells were present in a group in the distal wall of the groove between forestomach and glandular stomach, as well as scattered singly in the surface and foveolar epithelia of the glandular stomach. Almost all immunoreactive brush cells had a thin basal process in contact with the basement membrane. No secretory granules with dense cores, similar to those of endocrine cells, were observed in the brush cells. The specific appearance of FABP-immunoreactivity in the brush cell indicates that this cell type is a distinct entity from other epithelial cells in the stomach and that FABP is a useful histochemical marker of the brush cells. FABP may be involved in the specific function(s) of this cell type related to fatty acid metabolism.  相似文献   

18.
Beales IL 《Life sciences》2004,75(25):2983-2995
The hormone gastrin stimulates proliferation of the gastric mucosa. Inflammation of the stomach is also associated with increased proliferation. The proliferative response is important in the reparative response to injury but can be deleterious by predisposing to the development of cancer. Parietal cells, but not the cells in the proliferative zone of the gastric glands, express the appropriate gastrin receptor. Parietal cells may mediate the trophic effects of gastrin by secreting other growth factors. The role of parietal cells in the proliferative responses has been examined in this study. Rabbit parietal cells were cultured with gastrin or the cytokine interleukin-1beta for 18 hours. The conditioned medium from gastrin or IL-1beta stimulated parietal cells increased proliferation of HeLa cells in an epidermal growth factor-receptor dependant manner. Gastrin and IL-1beta stimulated the secretion of heparin-binding epidermal growth factor and amphiregulin but not transforming growth factor-alpha from parietal cells. Combinations of gastrin and IL-1beta on growth factor secretion were synergistic. The protein kinase C inhibitor staurosporine abolished these stimulatory effects of gastrin and IL-1beta. Divergent effects on histamine-stimulated acid secretion were observed; 18 hours pre-treatment with gastrin enhanced acid secretion by 50% but IL-1beta inhibited acid secretion in both control and gastrin pre-treated parietal cells. The acid-secreting parietal cell plays a central role in the regulation of mucosal proliferation in gastric inflammation. Secretion of paracrine growth factors by parietal cells may be an important point of integration between the endocrine and inflammatory stimuli in determining mucosal responses to injury and inflammation.  相似文献   

19.
Secretion of bicarbonate into the adherent layer of mucus gel creates a pH gradient with a near-neutral pH at the epithelial surfaces in stomach and duodenum, providing the first line of mucosal protection against luminal acid. The continuous adherent mucus layer is also a barrier to luminal pepsin, thereby protecting the underlying mucosa from proteolytic digestion. In this article we review the present state of the gastroduodenal mucus bicarbonate barrier two decades after the first supporting experimental evidence appeared. The primary function of the adherent mucus gel layer is a structural one to create a stable, unstirred layer to support surface neutralization of acid and act as a protective physical barrier against luminal pepsin. Therefore, the emphasis on mucus in this review is on the form and role of the adherent mucus gel layer. The primary function of the mucosal bicarbonate secretion is to neutralize acid diffusing into the mucus gel layer and to be quantitatively sufficient to maintain a near-neutral pH at the mucus-mucosal surface interface. The emphasis on mucosal bicarbonate in this review is on the mechanisms and control of its secretion and the establishment of a surface pH gradient. Evidence suggests that under normal physiological conditions, the mucus bicarbonate barrier is sufficient for protection of the gastric mucosa against acid and pepsin and is even more so for the duodenum. acid-base transporters; cystic fibrosis transmembrane conductance regulator channel; surface pH gradient; mucus gels; trefoil peptides  相似文献   

20.
Pentagastrin, histamine, urecholine, DBcAMP, and cGMP were all potent stimulants of acid secretion in the isolated stomach of the fed rat. With the exception of histamine and cGMP, all of these compounds were inactive when the stomach of the fasted rat was used. Pentagastrin was most effective when given on the serosal surface while histamine was equally potent whether it was added to the mucosal or serosal surface of the isolated stomach. The test would appear to be a relatively simply, but effective system for studying the basic mechanisms of action of several important secretagogues in the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号