首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian steroid contents and serum concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH) and prolactin were measured during the days after first ovulation in rats unilaterally ovariectomized in late prepuberty. In addition, follicle counts were made at second estrus and second metestrus. During the cycle following first ovulation, ovarian estradiol contents in unilaterally ovariectomized (ULO) rats were significantly increased as compared to intact rats on the day of metestrus, on diestrus 1 and on second estrus. Ovarian progesterone was significantly increased on the days of metestrus, on diestrus 1, second proestrus and second estrus, but no differences were seen in ovarian androgen contents. After ULO there was an indication of an augmented FSH surge at the first and the second ovulation. Follicle counts revealed that the total number of healthy as well as of atretic antral follicles on the day of second estrus was significantly increased after ULO, due to increased numbers of the smallest antral follicles. At second metestrus the number of larger antral follicles (350-500 micron 3) and the total number of healthy antral follicles was higher after ULO. It is concluded that the compensatory process after ULO involved increased recruitment of small antral follicles. Activities in the remaining ovary were not simply doubled but a new hormonal balance was established.  相似文献   

2.
《Theriogenology》1986,25(6):795-808
The total ovarian follicular populations were determined in ewes at Day 140 of pregnancy and at Day 5 postpartum. The right and left ovaries of five pregnant and five non-suckling ewes of the Préalpes-du-Sud breed were used in this study. All the ovaries were serially sectioned at a thickness of 7 μm, and every section was examined microscopically.The mean numbers of preantral follicles per ovary increased (P<0.005) at Day 5 postapartum as compared to Day 140 of pregnancy. The distribution of preantral non-atretic follicles into different size classes clearly showed a sharp increase in the mean number of follicles per size class at Day 5 postpartum, especially those leaving the reserve of primordial follicles.No difference was detected between both groups of ewes in the mean number of antral follicles. The diameter of the largest antral follicle at Day 140 of pregnancy does not exceed 1.5 mm. However, at Day 5 postpartum, a population of large follicles ≥ 1.5 mm was observed, reaching 2–4 mm in diameter.We conclude that although the pattern of normal follicular development is inhibited during late pregnancy, the ovary at this time is not quiescent, and ovarian follicular development starts well before parturition. The increasing number of preantral follicles, as well as the enlargement of antral follicle diameter observed at Day 5 postpartum, may be correlated with increasing secretion of FSH after lambing.  相似文献   

3.
Reduction of the number of growing follicles was proposed to contribute to the decline in reproductive performance with aging (Butcher and Page, 1981). To investigate the effects of a reduced number of follicles, rats which maintained regular estrous cycles at greater than 1 yr of age had either unilateral ovariectomy (ULO) or control surgery. Irregular estrous cycles and periods of constant estrus were more frequent during a period of 90 days after ULO than in controls. Follicle-stimulating hormone (FSH) concentration in plasma collected at 0900-1100 h of the metestrus nearest to 20, 50, and 90 days after surgery was increased by ULO; in both treatment groups, FSH increased between 20 and 90 days. Compensation in ovarian weight and number of corpora lutea had occurred by 90 days after ULO. Estradiol, estrone and luteinizing hormone (LH) concentrations did not change with time or treatment. Numbers of small, medium and large antral follicles per ovary at metestrus were increased by ULO, while the number of follicles per rat was decreased. It was concluded that the reduction in ovarian tissue (which decreased the number of growing follicles) resulted in an elevation of basal FSH followed by irregularity in estrous cycles.  相似文献   

4.
The common marmoset (Callithrix jacchus) belongs to the family Callitrichidae, the only anthropoid primates with a high and variable number of ovulations (one to four). An understanding of folliculogenesis in this species may provide some insight into factors regulating multiple follicular growth in primates. The aims of this study were to characterize in detail changes in the antral follicle population at different stages of the ovarian cycle, to characterize the marmoset FSH profile, and to relate cyclic changes in FSH to changes in follicle sizes and circulating estradiol concentrations. Fifty-five pairs of ovaries were collected (32 of which were at five distinct stages of the cycle) from adult marmosets, and antral follicles were manually excised and separated into four size groups. Daily urinary FSH and plasma estradiol and progesterone concentrations from Day 0 of the follicular phase to 2 days postovulation were measured in 22 marmosets using enzyme immunoassays. The FSH profile revealed two distinct peaks, on Days 2 and 6, during the 10-day follicular phase, with a marginal periovulatory increase on Days 9 and 10. Estradiol levels rose significantly (P: < 0.05) above baseline (Days 1-4) on Day 5 and continuously increased to a peak on the day preceding ovulation (Days 8 and 9). Follicle dissection revealed a high (mean = 68) and variable (range, 14-158) total number of antral follicles >0.6 mm. The number of antral follicles significantly declined (P: < 0.001) with age. The number of preovulatory follicles (>2 mm) was positively correlated with the number of antral follicles (P: < 0. 001) and tended to be negatively related to age (P: = 0.06). The number of antral follicles did not vary significantly with stage of the ovarian cycle, although the follicle size distribution was cycle-stage dependent (P: < 0.05). Follicles >1.0 mm appeared only in the follicular phase, and preovulatory follicles (>2.0 mm) appeared only at the end of the follicular phase (Days 7-9). The Day 2 FSH peak corresponded to emergence of a population of medium-size antral follicles, and the Day 6 peak was consistent with rising estradiol levels and appearance of the preovulatory follicles. These results suggest that some aspects of marmoset folliculogenesis are comparable to those in Old World primates, including the absence of multiple follicular waves and the appearance of an identifiable dominant follicle in the midfollicular phase. However, the midphase FSH peak, multiple dominant follicles, and abundance of nonovulatory antral follicles differ strongly from the pattern in Old World primates and humans. The findings are discussed in relation to the regulation of growth of multiple ovulatory follicles and provide the basis for further studies on factors influencing the dynamics of follicular growth and development in this species.  相似文献   

5.
In the intact rat, on estrus, the follicle-stimulating hormone (FSH) surge recruits nearly twice the correct number of follicles for ovulation, then, on metestrus, the excess follicles undergo atresia. In contrast, in the long-term hemicastrate rat, the FSH surge recruits fewer antral follicles on estrus, but there is little atresia on metestrus. To determine if fewer follicles are recruited by the FSH surge of long-term hemicastrates because the pool of follicles capable of responding to the FSH is smaller than in intact rats, preantral, antral, atretic, and healthy follicles were counted in ovaries of rats killed on each day of the estrous cycle. In general, there were only half as many healthy preantral follicles per rat in hemicastrates compared with intacts. There were an equal number of large antral follicles per rat in hemicastrates compared with intacts. Thus, compensatory hypertrophy did not extend to preantral follicles but was evident in large preovulatory follicles. These results suggest that fewer follicles are recruited on estrus in hemicastrate rats because fewer follicles are at the appropriate stage of development to respond to the FSH surge.  相似文献   

6.
A study was conducted to determine the effect of unilateral ovariectomy (ULO) on follicle stimulating hormone (FSH) secretion and compensatory ovarian hypertrophy in prepubertal ewes. Thirty-three ewe lambs were allotted according to age and weight to a control (C) or ULO group. In the C group, a sham ovariectomy was performed on day 0 and both ovaries were removed on day 7. In the ULO group, one ovary was removed on day 0 and the remaining ovary was removed on day 7. Blood samples were collected from the jugular vein via venipuncture at 0, 6, 12 and 24 hours after the time of sham surgery or ULO (day 0). Subsequent samples were collected daily until day 7, and all samples were assayed for FSH and LH. Unilateral ovariectomy increased (P<0.01) ovarian weight and follicular fluid weight; however, lyophilized ovarian weight was similar for both groups. Within the ULO group, removal of the ovary having the largest follicle(s) did not prevent an increase in ovarian weight or follicular fluid weight of the remaining ovary. Unilateral ovariectomy had no effect on the total number of follicles (1 to 6 mm) per ovary; however, the number of large (5 to 6 mm) follicles per ovary was increased (P<0.05) following ULO. By 12 hours after ULO there was a transient increase (P<0.05) in the circulating concentrations of FSH. Circulating concentrations of luteinizing hormone (LH) were either low or undetectable in these prepubertal ewes and no LH response was observed following ULO. These results indicate that compensatory ovarian hypertrophy in ULO prepubertal ewes is accompanied by a transient rise in circulating FSH concentrations.  相似文献   

7.
Action of PMSG on follicular populations in the heifer   总被引:2,自引:0,他引:2  
The short-term action of PMSG on the population of growing follicles in cattle was studied using histological methods. On Day 7 of a synchronized oestrous cycle 10 Friesian heifers were unilaterally ovariectomized. The remaining ovary was immediately stimulated by an injection of PMSG (2000 i.u.) and was removed 48 h after the preovulatory discharge of LH. Control animals did not receive any injection of PMSG. In all ovaries, follicles greater than 70 micron diameter were counted, measured and checked for atresia. The mitotic index in granulosa cells of follicles of different sizes was estimated in both ovaries of all the PMSG-injected animals. Unilateral ovariectomy alone had no significant effect on follicular populations. In the interval between PMSG injection and removal of the second ovary (148 +/- 22.7 h), PMSG significantly increased the number of normal preantral follicles but did not change the number of normal antral follicles. The mitotic index doubled in preantral and early antral follicles but remained unchanged in large antral follicles. PMSG stimulated slightly the growth of the antrum in large antral follicles but did not stimulate its formation in preantral follicles. The incidence of atresia among antral follicles, particularly the largest ones (diam. greater than 1.7 mm), was significantly reduced after PMSG, suggesting some 'rescue' of follicles from atresia.  相似文献   

8.
Growth rates of follicles in the ovary of the cow   总被引:4,自引:0,他引:4  
Follicular growth rates were studied in 5 Hereford-Holstein cross heifers on Day 14 of the oestrous cycle. The granulosa cell mitotic index (MI) was measured in non-atretic antral follicles of various diameters (0.13-8.57 mm) from Bouin-fixed ovaries collected before (199, control) and 2 h after colchicine treatment (189, treated). In control ovaries, follicles of 0.68-1.52 mm had a higher MI than those of other size classes (P less than 0.05). In colchicine-treated ovaries, the MI of follicles ranging from 0.68 to 8.57 mm increased more than that of other sized follicles, so that the mitotic time was shorter (0.78 h vs 1.32 h) in medium and large sized follicles (0.68-8.57 mm) than in smaller follicles (0.13-0.67 mm). Calculations based on the number of granulosa cells in follicles of various classes and from the time required to double the number of cells within a follicle indicate that a follicle takes 27 days to grow from 0.13 to 0.67 mm, 6.8 days from 0.68 to 3.67 mm and 7.8 days from 3.68 to 8.56 mm, indicating that growth rates varied with the size of the follicle. A period equivalent to 2 oestrous cycles would therefore be required for a follicle to grow through the antral phase, i.e. from 0.13 mm to preovulatory size. Increased MI, decreased mitotic time and increased atresia found in follicles larger than 0.68 mm could indicate a change in the follicular metabolism during its maturation.  相似文献   

9.
We investigated whether administration of monosodium L-glutamate (MSG) to neonatal female rats would block the selective increase in serum follicle-stimulating hormone (FSH) concentration in immature rats in an attempt to provide a model in which to study the importance of the selective FSH rise on ovarian follicular development. In two separate experiments, s.c. injections of MSG (4 mg/g BW) on Days 1, 3, 5, 7 and 9 after birth blocked the selective increase in serum FSH concentration observed on Days 7 and 15 without blocking basal FSH secretion. Serum luteinizing hormone (LH) levels were unaffected in the first experiment and changed little in the second. MSG-treated rats had smaller ovaries on Days 15 and 23. The ovaries of MSG-treated rats on Day 15 showed decreased follicular growth as evidenced by a decrease in the number and percentage of follicles with diameters greater than 50 microns, in the number of follicles with greater than 1 layer of granulosa cells, and in the number of follicles beyond the primary stage of follicular development. These differences between MSG-treated rats and controls all but disappeared by Day 23. The results demonstrate that neonatal administration of MSG blocks the selective increase in serum FSH concentration in immature female rats and suggest that this selective increase in serum FSH levels plays a role in the normal acceleration of ovarian follicular development but is not needed for the development of preovulatory follicles by the sixth week after birth.  相似文献   

10.
Follicles were isolated from hamster ovaries at 09:00 h and 15:00 h on each of the 4 days of the oestrous cycle (Day 1 = oestrus; Day 4 = pro-oestrus) by microdissection and by a mixture of enzymes and classified into 10 stages with pre-calibrated pipettes (stage 1 = preantral follicles with 1 layer of granulosa cells; stage 10 = preovulatory antral follicles). The follicles at each stage were incubated for 4 h with [3H]thymidine with incorporation expressed per microgram follicular DNA or per follicle. A significant increase in thymidine per follicle occurred at 15:00 h on Days 1 and 3 of the cycle from stage 2 (bilaminar follicle) to stage 6 (7-8 layers granulosa cells plus theca). When expressed as thymidine per follicle or microgram DNA, there was a significant increase in incorporation for stages 1-4 (4 layers granulosa cells) on Day 4 at 15:00 h compared to 09:00 h, presumably as a consequence of the preovulatory increase in gonadotrophins. Follicles in stages 5 to 8 (preantral follicles with 5 or more layers of granulosa cells to small antral follicles), from which the next set of ovulatory follicles will be selected, did not show a significant peak in incorporation per microgram DNA until Day 1 at 09:00 and 15:00 h when the second increase in FSH is in progress. DNA synthesis was similarly sustained throughout Day 1 for stage 1-4 follicles. These results suggest that periovulatory changes in FSH and LH, directly or indirectly, are not only responsible for ovulation and the recruitment of the next set of follicles destined to ovulate but also stimulate DNA replication in smaller follicles which develop over the course of several cycles before they ovulate or become atretic.  相似文献   

11.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 2,3,4,7,8-pentachlorodibenzofuran (PCDF) are widespread environmental pollutants. TCDD is well known for its adverse effects on female reproduction when administered acutely to immature or adult rats. It is also known that fetal/neonatal exposure to this compound alters reproductive parameters. It is unknown whether exposure to PCDF causes similar adverse effects in offspring. The objectives of the study were to investigate the effects of in utero and lactational (IUL) exposure to TCDD and PCDF on subsequent growth, estrous cycles, and ovulation. Additionally a gonadotropin-primed immature rat model was used to investigate possible direct effects on the ovary after IUL exposure to TCDD (2.5 microg/kg) by evaluating 1) ovarian morphometrics and 2) serum estradiol concentrations. Body weights were reduced in animals with IUL exposure to TCDD and PCDF relative to those in controls at 10 days of age (P < 0.05 for each), and this difference was maintained until termination of the experiment at 125-165 days of age (P < 0.05). Exposure to TCDD or PCDF also disrupted regular estrous cycles and inhibited ovulation rate. On Day 23 (before eCG stimulation), ovaries from animals exposed to TCDD contained the same number of primordial, primary, secondary, preantral, and antral follicles as ovaries from control animals. On Day 25 (48 h after eCG stimulation), ovaries from TCDD-exposed rats had significantly fewer large preovulatory follicles when compared with ovaries from controls. The numbers of smaller follicles (both antral and small antral) were not different. Serum estradiol was significantly lower in TCDD-exposed animals 48 h after eCG stimulation.  相似文献   

12.
Cyclic hamsters hypophysectomized at estrus (Day 1 of the cycle) and injected with 5 micrograms follicle-stimulating hormone (FSH) on Day 1 and 20 micrograms luteinizing hormone (LH) in polyvinylpyrrolidone (PVP) from Days 1-4 ovulated 15.3 ova, in response to 30 IU human chorionic gonadotropin (hCG) administered at 1500 h on Day 4 (Kim and Greenwald, 1984). When 1 mg progesterone (P4) was administered daily from Days 1-4 concurrent with the above regimen, ovulation increased to 38 ova, a clearcut superovulatory response. However, daily injection of 1, 10, or 100 micrograms P4 plus FSH and LH reduced the number of antral follicles present on the afternoon of Day 4 to 3-4 per ovary, compared to 9 per ovary after FSH-LH alone, and the ovulation rate was drastically reduced with most animals being anovulatory. Substituting 1 mg 17 alpha-hydroxyprogesterone or estradiol cyclopentylpropionate for P4 on Days 1-4 did not alter the number of antral follicles on Day 4 from FSH-LH alone, whereas 1 mg androstenedione or 1 mg testosterone cyclopentylpropionate reduced the number of antral follicles to 3 or less. Hence, the stimulatory effects of 1 mg P4 are not attributable to its conversion to other P4 derivatives. After the concurrent injection of 1 mg P4 and FSH-LH, on the afternoon of Day 3, an average of only 1.8 large preantral follicles was present per ovary. By the morning of Day 4, however, the ovary contained 14 large preantral and early antral follicles in addition to 8 large antral follicles. Injection of hCG at this time resulted in the ovulation of 14.5 ova.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
To investigate the factors contributing to the different ovulation rates observed in two strains of sheep (Booroola 5.2, Merino 1.2), in-vivo monitoring of follicular kinetics followed by histological examination of both ovaries was performed during the late luteal and follicular phases. Ewes of both strains were either ovariectomized at Day 13, or had the 3 largest follicles of each ovary ink-labelled at Day 13 and were ovariectomized at Day 15, or had the 3 largest follicles of each ovary ink-labelled at Days 13 and 15 and were ovariectomized 16 h after the beginning of oestrus (N = 6 per time per strain). In another experiment, the age effects on the follicular populations of these two strains were also studied. There were 2-4 times more primordial follicles and 1.5-2 times more preantral follicles in the ovaries of Booroola than in control Merino ewes, although the number of antral follicles was the same. The percentage of normal follicles in this population was higher in Merino than Booroola ovaries. In Booroola ewes, there was no correlation between the number of antral follicles per ovary and the ovulation rate at the previous cycle (r = 0.22). This suggests that follicle numbers do not play a key role in the high ovulation rate of the Booroola strain. The number of follicles initiating growth from the primordial pool, the number of growing follicles disappearing at the preantral stage, the pattern of antrum development, granulosa cell multiplication and appearance of atresia differed between strains. The reasons for the high ovulation rate of the Booroola strain became clear when preovulatory enlargement was followed by ink labelling. An extended period of time during which recruitment of ovulatory follicles takes place, together with a low incidence of selection and the ability of the follicles to wait for ovulation are the features involved in this high ovulation rate.  相似文献   

14.
Prepuberal 130-day-old gilts were treated with 10 ml of charcoal-stripped porcine serum (PS), whole porcine follicular fluid (WpFF) or charcoal-stripped pFF (CpFF) twice daily beginning the day before and continuing 8 days after unilateral ovariectomy (ULO). Follicle-stimulating hormone (FSH) declined for the first 14 h after ULO in WpFF and CpFF gilts and then by 24 h returned to values observed at or before ULO, whereas FSH was increased nearly twofold at 14 h in PS gilts. At 8 days after ULO the remaining ovaries from PS-treated gilts were heavier than ovaries from follicular fluid-treated gilts. In a second experiment, ovariectomized 130-day-old gilts were assigned to either a group infused with PS, a group infused with 5 ml CpFF, or a group infused with 10 ml Cpff at 18 and 2 h before a gonadotropin-releasing hormone (GnRH) challenge. Porcine follicular fluid had no effect on luteinizing hormone (LH) response to GnRH, depressed the FSH response to a 10-micrograms challenge of GnRH, but had no effect on FSH response to a 50-micrograms challenge of GnRH. In a third study, gilts were subjected to sham ovariectomy (Sham) or ULO at 130 days of age. GnRH (10 micrograms) was given on Days 1, 2 or 8 after surgery. The response to GnRH in ULO versus Sham gilts did not differ for FSH or LH on any day.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The polycyclic aromatic hydrocarbon (PAH) 9,10-dimethyl-1,2-benzanthracene (DMBA) destroys primordial, primary, and secondary ovarian follicles in rodents, but its effects on antral follicles have received limited attention. PAHs are metabolized to reactive species, some of which can undergo redox cycling to generate reactive oxygen species (ROS). We previously showed that ROS initiate apoptosis in preovulatory follicles cultured without gonadotropin support and that glutathione (GSH) depletion induces apoptosis in the presence of gonadotropins. In the present study, we tested the hypothesis that DMBA induces apoptosis in preovulatory follicles, which is mediated by ROS and prevented by GSH. Preovulatory follicles were isolated from ovaries of 25-day-old rats 48 h after the injection of 10 IU of eCG and were cultured with DMBA in the presence of FSH for 2 to 48 h. DMBA induced granulosa cell (GC) and theca cell (TC) apoptosis at 48 h, as judged by TUNEL and activated caspase-3 immunostaining. DMBA treatment also increased the numbers of GCs and TCs that immunostained for the proapoptotic protein BAX. Follicular ROS levels were significantly increased in DMBA-treated follicles at 12, 24, and 48 h. GSH supplementation protected against and GSH depletion enhanced the induction of apoptosis in GCs and TCs by DMBA. These findings suggest that GSH is a critical protective mechanism against DMBA-induced apoptosis in antral follicles and that ROS generation may mediate DMBA-induced GC apoptosis.  相似文献   

16.
J Roos  C Lazarus  C Aron 《Endokrinologie》1980,75(3):257-268
The present study was undertaken to investigate the mechanisms of the stress-related ovulatory effects of hemicastration in the rat. Previous work (Roos et al., 1976) had shown that ovulation induced by unilateral ovariectomy (ULO) was suppressed in adrenalectomized females when ULO was performed on dioestrus III at 10--11 h in 5-day cyclic rats. Using the same experimental schema an increase in blood progesterone within 1 to 4 hours after ULO has been found to be present in adrenal intact females and suppressed in adrenalectomized rats. PB treatment (30 mg/kg, i.p.) concomitant with ULO at 10--11 h on dioestrus III significantly decreased the number of ovulating females without preventing blood progesterone concentration to increase at 12--13 h. A partial blockade of ovulation resulted from PB injection at 13 or 18 h. The ovulatory effects of ULO observed in females injected with PB at 23 h on dioestrus III or at 5 h on prooestrus were identical to those observed in hemiovariectomized non PB treated females. Only a small proportion of hemiovariectomized females displayed an LH release at 15--16 h and 17.30 h--18.30 h on dioestrus III. In contrast a significant FSH release was observed in this interval of time following ULO. Microscopic examination of the ovaries on prooestrus at either 11 h or 16 h revealed the presence of corpora lutea with morphological features corresponding to very different stages of development. We can conclude that progesterone of adrenal origin constituted the trigger of ovulation and caused LH-release during a time period extending from 13 h to 23 h on dioestrus III following ULO in the rat.  相似文献   

17.
Ovarian function in ewes at the onset of the breeding season   总被引:2,自引:0,他引:2  
Transrectal ultrasonography of ovaries was performed each day, during the expected transition from anoestrus to the breeding season (mid-August to early October), in six Western white-faced cross-bred ewes, to record ovarian antral follicles > or = 3 mm in size and luteal structures. Jugular blood samples were collected daily for radioimmunoassay (RIA) of follicle-stimulating hormone (FSH), oestradiol and progesterone. The first ovulation of the breeding season was followed by the full-length oestrous cycle in all ewes studied. Prior to the ovulation, all ewes exhibited a distinct increase in circulating concentrations of progesterone, yet no corpora lutea (CL) were detected and luteinized unovulated follicles were detected in only three ewes. Secretion of FSH was not affected by the cessation of anoestrus and peaks of episodic FSH fluctuations were associated with the emergence of ovarian follicular waves (follicles growing from 3 to > or = 5 mm). During the 17 days prior to the first ovulation of the breeding season, there were no apparent changes in the pattern of emergence of follicular waves. Mean daily numbers of small antral follicles (not growing beyond 3 mm in diameter) declined (P < 0.05) after the first ovulation. The ovulation rate, maximal total and mean luteal volumes and maximal serum progesterone concentrations, but not mean diameters of ovulatory follicles, were ostensibly lower during the first oestrous cycle of the breeding season compared with the mid-breeding season of Western white-faced ewes. Oestradiol secretion by ovarian follicles appeared to be fully restored, compared with anoestrous ewes, but it was not synchronized with the growth of the largest antral follicles of waves until after the beginning of the first oestrous cycle. An increase in progesterone secretion preceding the first ovulation of the breeding season does not result, as previously suggested, from the ovulation of immature ovarian follicles and short-lived CL, but progesterone may be produced by luteinized unovulated follicles and/or interstitial tissue of unknown origin. This increase in serum concentrations of progesterone does not alter the pattern of follicular wave development, hence it seems to be important mainly for inducing oestrous behaviour, synchronizing it with the preovulatory surge of luteinizing hormone (LH), and preventing premature luteolysis during the ensuing luteal phase. Progesterone may also enhance ovarian follicular responsiveness to circulating gonadotropins through a local mechanism.  相似文献   

18.
The objective of this study was to investigate the possible effect of recombinant bovine somatotropin (BST) on ovarian folliculogenesis and ovulation rate. Twelve Hereford x Friesian heifers received daily injections of either 25 mg BST (6 heifers) or vehicle (6 heifers) for a period of two estrous cycles until slaughter. Blood samples were collected three times a week for measurements of peripheral growth hormone (GH), insulin-like growth factor I (IGF-I), FSH, LH, estradiol, and progesterone. Serial blood samples were also taken every 10 min for 8 h on Days 12 and 19 of the second estrous cycle to monitor GH, IGF-I, FSH, and LH profiles. At the end of treatment (Day 7 of the third estrous cycle), the heifers were killed and their ovaries were collected. Ovulation rate was determined by counting the number of fresh corpora lutea (CL). All antral follicles greater than or equal to 2 mm in diameter were dissected to assess antral follicle populations. Granulosa and thecal cells from the three largest follicles and CL from each heifer were collected for FSH and LH binding measurements. All heifers had a single ovulation. The treated heifers had significantly more antral follicles (60.2 +/- 6.7) than did the animals in the control group (33.2 +/- 3.2) (p less than 0.001). When follicles were grouped according to diameter, the mean numbers of follicles greater than 10 mm, 5-10 mm, and 2-5 mm in diameter were 0.8 +/- 0.2, 6.8 +/- 1.4, and 52.5 +/- 6.5 for the treated group, and 0.8 +/- 0.2, 6.5 +/- 1.0, and 25.8 +/- 2.7 for controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A study was designed to characterize the compensatory ovarian response to unilateral ovariectomy (ULO) in prepuberal gilts and to investigate further the mechanisms involved in compensatory ovarian hypertrophy (COH). Forty-eight crossbred gilts were sham ovariectomized (Sham) or unilaterally ovariectomized at 130 days of age (Day 0). Remaining ovaries in ULO gilts were removed and Sham gilts were bilaterally ovariectomized 2, 4 or 8 days later. A peripheral blood sample was taken before surgery and ovarian venous blood samples were taken before removal of each ovary. Serum estradiol-17 beta (E2) concentrations were determined. Mean wet and dry ovarian weights per ovary on Day 2 for ULO and Sham gilts were 3.4 versus 2.8 and 0.26 versus 0.24 g, respectively. Those weights on Days 4 and 8 were greater (P less than 0.01) for ULO than Sham gilts. Follicular fluid weight per ovary was greater (P less than 0.05) for ULO than Sham gilts on Days 2, 4 and 8. Ovarian venous E2 concentrations were greater (P less than 0.01) for ULO than for Sham gilts on Days 2 and 4 but were similar on Day 8. In a second experiment, 42 prepuberal gilts 130 days of-age were subjected to Sham (n = 18), ULO (n = 18) or bilateral ovariectomy (BLO; n = 6) to evaluate follicle-stimulating hormone (FSH) and luteinizing hormone (LH) secretion immediately after surgical treatment. Release of FSH within the first 24 h was greater for BLO than ULO and for ULO than Sham gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Unabated stimulation by low doses of LH-like activity produces ovarian follicular cysts in both progesterone-synchronized immature rats and pregnant rats. Serum FSH is maintained in both of these models at values similar to those observed on diestrus. To determine whether unabated stimulation by basal serum FSH affects the ability of LH-like activity to induce cystic ovaries, immature hypophysectomized (HYPOXD) rats were given either no hormone (control); 2 micrograms ovine FSH (oFSH) once daily for 14 days beginning on Day 27; 0.5 IU hCG twice daily for 13 days beginning on Day 28 of age; or both oFSH and hCG (FSH + hCG) beginning on Day 27 and Day 28, respectively. By the end of the in vivo treatments (Day 40 of age), the largest follicles in the ovaries of control and hCG-treated HYPOXD rats were at the preantral stage of development, whereas the largest follicles present in ovaries from FSH-treated animals were atretic and at the small antral stage of development. In contrast, ovaries from rats treated with FSH + hCG displayed large follicular cysts by Day 37 of age. Of the serum steroids analyzed, only estradiol and androstenedione concentrations for animals treated with FSH + hCG were consistently elevated above values observed for control HYPOXD rats. Serum testosterone and dihydrotestosterone values were similar for hCG-treated and control HYPOXD rats throughout the in vivo treatments. In contrast, these steroids were elevated between Days 3 and 5 of FSH treatment (+/- hCG treatment). Serum progesterone and estrone values for all in vivo gonadotropin treatment groups were similar to those of controls. Serum insulin concentrations were not affected by any in vivo treatment. Incubates of follicles/cysts from FSH + hCG-treated HYPOXD rats contained more progesterone, androstenedione, and estradiol than incubates of follicles from any other in vivo treatment group. Follicles from all in vivo treatment groups responded to 8-bromo cAMP (cAMP) with increased in vitro progesterone accumulation. However, only follicles from FSH-treated and FSH + hCG-treated rats responded to cAMP with increased androstenedione and estradiol accumulation in vitro. Inclusion of 400 ng of either androstenedione or testosterone in the incubation medium enhanced progesterone accumulation in follicular incubates from control, hCG-treated, and FSH-treated HYPOXD rats, but did not enhance progesterone accumulation in follicular incubates from FSH + hCG-treated animals. Both androstenedione and estradiol production increased markedly under these conditions for follicles from all in vivo treatment groups.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号