首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
p62Dok, the rasGAP-binding protein, is a common target of protein-tyrosine kinases. It is one of the major tyrosine-phosphorylated molecules in v-Src-transformed cells. Dok consists of an amino-terminal Pleckstrin homology domain, a putative phosphotyrosine binding domain, and a carboxyl-terminal tail containing multiple tyrosine phosphorylation sites. The importance and function of these sequences in Dok signaling remain largely unknown. We have demonstrated here that the expression of Dok can inhibit cellular transformation by the Src tyrosine kinase. Both the phosphotyrosine binding domain and the carboxyl-terminal tail of Dok (in particular residues 336-363) are necessary for such activity. Using a combinatorial peptide library approach, we have shown that the Dok phosphotyrosine binding domain binds phosphopeptides with the consensus motif of Y/MXXNXL-phosphotyrosine. Furthermore, Dok can homodimerize through its phosphotyrosine binding domain and Tyr(146) at the amino-terminal region. Mutations of this domain or Tyr(146) that block homodimerization significantly reduce the ability of Dok to inhibit Src transformation. Our results suggest that Dok oligomerization through its multiple domains plays a critical role in Dok signaling in response to tyrosine kinase activation.  相似文献   

2.
Dok, a 62-kDa Ras GTPase-activating protein (rasGAP)-associated phosphotyrosyl protein, is thought to act as a multiple docking protein downstream of receptor or non-receptor tyrosine kinases. Cell adhesion to extracellular matrix proteins induced marked tyrosine phosphorylation of Dok. This adhesion-dependent phosphorylation of Dok was mediated, at least in part, by Src family tyrosine kinases. The maximal insulin-induced tyrosine phosphorylation of Dok required a Src family kinase. A mutant Dok (DokDeltaPH) that lacked its pleckstrin homology domain failed to undergo tyrosine phosphorylation in response to cell adhesion or insulin. Furthermore, unlike the wild-type protein, DokDeltaPH did not localize to subcellular membrane components. Insulin promoted the association of tyrosine-phosphorylated Dok with the adapter protein NCK and rasGAP. In contrast, a mutant Dok (DokY361F), in which Tyr361 was replaced by phenylalanine, failed to bind NCK but partially retained the ability to bind rasGAP in response to insulin. Overexpression of wild-type Dok, but not that of DokDeltaPH or DokY361F, enhanced the cell migratory response to insulin without affecting insulin activation of mitogen-activated protein kinase. These results identify Dok as a signal transducer that potentially links, through its interaction with NCK or rasGAP, cell adhesion and insulin receptors to the machinery that controls cell motility.  相似文献   

3.
p62 dok是新近发现的一种信号分子 ,属酪氨酸激酶下游蛋白 ,在胰岛素和 /或Pervanadate等刺激下可产生酪氨酸磷酸化 ,酪氨酸磷酸化后的p62 dok可与p2 1rasGAP结合 ,因而推测p62 dok可能参与Ras MAP激酶径路的调节 ,在胰岛素信号转导中起着重要作用 ,与糖尿病尤其是Ⅱ型糖尿病的发生、发展有关。目前关于p62 dok的研究仅局限在 3T3 L1,Sf9等少数培养的细胞 ,尚未见p62 dok在整体动物 ,特别是糖尿病动物上表达的直接报道。本文拟通过STZ类I型糖尿病大鼠模型 ,探讨胰岛素的主要靶细胞 脂…  相似文献   

4.
The Lck tyrosine kinase is involved in signaling by T cell surface receptors such as TCR/CD3, CD2, and CD28. As other downstream protein-tyrosine kinases are activated upon stimulation of these receptors, it is difficult to assign which tyrosine-phosphorylated proteins represent bona fide Lck substrates and which are phosphorylated by other tyrosine kinases. We have developed a system in which Lck can be activated independently of TCR/CD3. We have shown that activation of an epidermal growth factor receptor/Lck chimera leads to the specific phosphorylation of Ras GTPase-activating protein (RasGAP) and two RasGAP-associated proteins, p56(dok) and p62(dok). Activation of the chimeric protein correlates with an increase in cellular Ca(2+) in the absence of ZAP-70 and phospholipase Cgamma1 phosphorylation. Furthermore, we have found that p62(dok) co-immunoprecipitates with the activated epidermal growth factor receptor/LckF505 and that phosphorylated Dok proteins bind to the Src homology 2 domain of Lck in vitro. In addition, we have shown that activation via the CD2 but not the TCR/CD3 receptor leads to the phosphorylation of p56(dok) and p62(dok). Using JCaM1.6 cells, we have demonstrated that Lck is required for CD2-mediated phosphorylation of Dok proteins. We propose that phosphorylation and Src homology 2-mediated association of p56(dok) and p62(dok) with Lck play a selective function in accessory receptor signal transduction mechanisms.  相似文献   

5.
SHP-1 plays key roles in the modulation of hematopoietic cell signaling. To ascertain the impact of SHP-1 on colony-stimulating factor-1 (CSF-1)-mediated survival and proliferative signaling, we compared the CSF-1 responses of primary bone marrow macrophages (BMM) from wild-type and SHP-1-deficient motheaten (me/me) mice. CSF-1-induced protein tyrosine phosphorylation levels were similar in wild-type and me/me BMM, except for the constitutive hyperphosphorylation of a 62-kDa phosphoprotein (pp62) in me/me macrophages. pp62 was identified as the RASGAP-associated p62(DOK) and was shown to be the major CSF-1R-associated tyrosine-phosphorylated protein in CSF-1-treated BMM. p62(DOK) was found to be constitutively associated with SHP-1 in BMM and in 293T cells, co-expressing p62(dok) and either wild-type or catalytically inert SHP-1 (SHP-1 C453S). In both cell types, the interaction of SHP-1 with p62(DOK) occurred independently of p62(DOK) tyrosine phosphorylation, but only the tyrosine-phosphorylated p62(DOK) was bound by SHP-1 C453S in a far Western analysis. These findings suggest a constitutive association of SHP-1 and p62(DOK) that is either conformation-dependent or indirect as well as a direct, inducible association of the SHP-1 catalytic domain with tyrosine-phosphorylated p62(DOK). p62(DOK) hyperphosphorylation is not associated with altered CSF-1-induced RAS signaling or proliferation. However, whereas wild-type macrophages undergo cell death following CSF-1 removal, me/me macrophages exhibit prolonged survival in the absence of growth factor. Thus, p62(DOK) is a major SHP-1 substrate whose tyrosine phosphorylation correlates with growth factor-independent survival in macrophages.  相似文献   

6.
During macroautophagy/autophagy, SQSTM1/p62 plays dual roles as a key mediator of cargo selection and as an autophagic substrate. SQSTM1 links N-degrons and/or ubiquitinated cargoes to the autophagosome by forming homo- or hetero-oligomers, although its N-degron recognition and oligomerization mechanisms are not well characterized. We recently found that SQSTM1 is a novel type of N-recognin whose ZZ domain provides a negatively-charged binding pocket for Arg-charged N-degron (Nt-Arg), a prototype type-1 substrate. Although differences in binding affinity exist for each N-degron, SQSTM1 also interacts with type-2 N-degrons, such as Nt-Tyr and Nt-Trp. Intriguingly, interactions between SQSTM1’s ZZ domain and various N-degrons are greatly influenced by pH-dependent SQSTM1 oligomerization via its PB1 domain. Because cellular pH conditions vary from neutral to acidic depending on the stage of autophagy, the pH-dependent regulation of SQSTM1’s oligomerization must be tightly coupled with the autophagic process.  相似文献   

7.
p62 is a multifunctional adaptor protein implicated in various cellular processes. It has been found to regulate selective autophagy, cell survival, cell death, oxidative stress, DNA repair and inflammation, and to play a role in a number of diseases, such as tumourigenesis, Paget’s disease of bone, neurodegenerative disease, diabetes, and obesity. Cell death induction is an important cellular process. The dysregulation of cell death induction is involved in the pathogenesis of various diseases, such as cancer, neurodegeneration diseases, and diabetes. In this review, we discuss the functional role of p62 in inducing cell death in response to multiple stimuli, and we summarize the potential signaling pathways that contribute to this regulation. Given the important role of p62 in regulating cell death, p62 is considered to be a reasonable target for managing cell death dysregulation-related pathogenic conditions. A better understanding of the role of p62 and its related mechanisms in regulating cell death is necessary for the more precise utilization of p62 as a target for treating relevant diseases.  相似文献   

8.
We have previously shown that p62/SQSTM1 binds to p38. In this study, we identified two association domains of p62 to p38 by conducting co-immunoprecipitation experiments. One domain comprises the amino acids 173-182, named N-terminal p38 interaction (NPI) domain, and the other domain comprises the amino acids 335-344, named C-terminal p38 interaction (CPI) domain. An aspartic acid tripeptide located at 335-337 was required for their association. However, the direct interaction was only observed between the recombinant p38 and the peptide of the NPI domain, but not that of the CPI domain in the surface plasmon resonance analyses. These results suggest that the CPI domain may serve to form a certain conformation suitable for the association with p38. Furthermore, we showed that knockdown of p62 expression by siRNA led to impaired p38 phosphorylation only when HeLa cells were stimulated by cytokine. The critical role of p62 in cytokine-dependent p38 signalling pathway was further confirmed by measuring IL-8 mRNA. Cytokine mRNA is often stabilized via p38 pathway. In the absence of p62, IL-8 mRNA induced by IL-1beta became more fragile. These data show that p62 specifically regulates cytokine-dependent p38 signalling pathway.  相似文献   

9.
10.
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.  相似文献   

11.
12.
An H  Lu X  Liu D  Yarbrough WG 《PloS one》2011,6(1):e16427
LZAP (Cdk5rap3, C53) is a putative tumor suppressor that inhibits RelA, Chk1 and Chk2 and activates p53. LZAP is lost in a portion of human head and neck squamous cell carcinoma and experimental loss of LZAP expression is associated with enhanced invasion, xenograft tumor growth and angiogenesis. p38 MAPK can increase or decrease proliferation and cell death depending on cellular context. LZAP has no known enzymatic activity, implying that its biological functions are likely mediated by its protein-protein interactions. To gain further insight into LZAP activities, we searched for LZAP-associated proteins (LAPs). Here we show that the LZAP binds p38, alters p38 cellular localization, and inhibits basal and cytokine-stimulated p38 activity. Expression of LZAP inhibits p38 phosphorylation in a dose-dependent fashion while loss of LZAP enhances phosphorylation and activation with resultant phosphorylation of p38 downstream targets. Mechanistically, the ability of LZAP to alter p38 phosphorylation depended, at least partially, on the p38 phosphatase, Wip1. Expression of LZAP increased both LZAP and Wip1 binding to p38. Taken together, these data suggest that LZAP activity includes inhibition of p38 phosphorylation and activation.  相似文献   

13.
Ribosomal biogenesis is correlated with cell cycle, cell proliferation, cell growth and tumorigenesis. Some oncogenes and tumor suppressors are involved in regulating the formation of mature ribosome and affecting the ribosomal biogenesis. In previous studies, the mitochondrial ribosomal protein L41 was reported to be involved in cell proliferation regulating through p21(WAF1/CIP1) and p53 pathway. In this report, we have identified a mitochondrial ribosomal protein S36 (mMRPS36), which is localized in the mitochondria, and demonstrated that overexpression of mMRPS36 in cells retards the cell proliferation and delays cell cycle progression. In addition, the mMRPS36 overexpression induces p21(WAF1/CIP1) expression, and regulates the expression and phosphorylation of p53. Our result also indicate that overexpression of mMRPS36 affects the mitochondrial function. These results suggest that mMRPS36 plays an important role in mitochondrial ribosomal biogenesis, which may cause nucleolar stress, thereby leading to cell cycle delay.  相似文献   

14.
15.
We recently showed that the COOH terminus of the cystic fibrosis transmembrane conductance regulator associates with the submembranous scaffolding protein EBP50 (ERM-binding phosphoprotein 50 kD; also called Na(+)/H(+) exchanger regulatory factor). Since EBP50 associates with ezrin, this interaction links the cystic fibrosis transmembrane conductance regulator (CFTR) to the cortical actin cytoskeleton. EBP50 has two PDZ domains, and CFTR binds with high affinity to the first PDZ domain. Here, we report that Yes-associated protein 65 (YAP65) binds with high affinity to the second EBP50 PDZ domain. YAP65 is concentrated at the apical membrane in airway epithelia and interacts with EBP50 in cells. The COOH terminus of YAP65 is necessary and sufficient to mediate association with EBP50. The EBP50-YAP65 interaction is involved in the compartmentalization of YAP65 at the apical membrane since mutant YAP65 proteins lacking the EBP50 interaction motif are mislocalized when expressed in airway epithelial cells. In addition, we show that the nonreceptor tyrosine kinase c-Yes is contained within EBP50 protein complexes by association with YAP65. Subapical EBP50 protein complexes, containing the nonreceptor tyrosine kinase c-Yes, may regulate apical signal transduction pathways leading to changes in ion transport, cytoskeletal organization, or gene expression in epithelial cells.  相似文献   

16.
The effect of complete Freund's adjuvant (CFA) on distinct T cell functions was investigated. Adjuvant was found to suppress the generation of cytolytic T cells in vivo when mixed with allogeneic P815 cells before immunization of C57BL/6 mice. Inoculation of the mice with either adjuvant or adjuvant emulsified with allogeneic cells resulted in whole splenic populations or immunoabsorbent-purified T cells that did not generate cytolytic activity in vitro against allogeneic cells. Mixing T cells from normal and adjuvant-treated mice before in vitro sensitization resulted in suppression of lytic activity. However, memory T cells were not subject to the same suppressive regulation as were precytotoxic T cells since adjuvant had no effect on subsequent boosting of memory.  相似文献   

17.
Mutations of the p62/Sequestosome 1 gene (p62/SQSTM1) account for both sporadic and familial forms of Paget's disease of bone (PDB). We originally described a methionine-->valine substitution at codon 404 (M404V) of exon 8, in the ubiquitin protein-binding domain of p62/SQSTM1 gene in an Italian PDB patient. The collection of data from the patient's pedigree provided evidence for a familial form of PDB. Extension of the genetic analysis to other relatives in this family demonstrated segregation of the M404V mutation with the polyostotic PDB phenotype and provided the identification of six asymptomatic gene carriers. DNA for mutational analysis of the exon 8 coding sequence was obtained from 22 subjects, 4 PDB patients and 18 clinically unaffected members. Of the five clinically ascertained affected members of the family, four possessed the M404V mutation and exhibited the polyostotic form of PDB, except one patient with a single X-ray-assessed skeletal localization and one with a polyostotic disease who had died several years before the DNA analysis. By both reconstitution and mutational analysis of the pedigree, six unaffected subjects were shown to bear the M404V mutation, representing potential asymptomatic gene carriers whose circulating levels of alkaline phosphatase were recently assessed as still within the normal range. Taken together, these results support a genotype-phenotype correlation between the M404V mutation in the p62/SQSTM1 gene and a polyostotic form of PDB in this family. The high penetrance of the PDB trait in this family together with the study of the asymptomatic gene carriers will allow us to confirm the proposed genotype-phenotype correlation and to evaluate the potential use of mutational analysis of the p62/SQSTM1 gene in the early detection of relatives at risk for PDB.  相似文献   

18.
Physical association of CD4 with the T cell receptor.   总被引:10,自引:0,他引:10  
The coreceptor hypothesis postulates that physical association of CD4 with the TCR is required for effective signaling for T cell activation. A variety of studies has suggested that the coreceptor function of CD4 allows responses to 10- to 100-fold lower levels of peptide:self MHC class II ligand. We test the hypothesis of CD4 physical association with the TCR in two different ways. First, we use a panel of soluble antibodies directed at different TCR epitopes to activate a cloned T cell line, and show that activation by antibodies directed at a particular TCR epitope can be inhibited by anti-CD4 antibodies binding to a certain CD4 epitope. These effects establish that the interaction of CD4 and the TCR occurs in a specific orientation. Second, we use the same system to provide evidence that the physical association of CD4 with the TCR is required for effective tyrosine phosphorylation of the TCR zeta-chain subunit, presumably reflecting delivery of p56lck (lck) to the TCR. Only anti-TCR antibodies that induce physical association of CD4 with the TCR as monitored by cocapping can induce efficient tyrosine-phosphorylation of the TCR zeta-chain, unless second antibodies are used to force CD4 and the TCR to associate. Furthermore, the phosphorylation of the TCR zeta-chain exactly parallesl physical association in time and drug sensitivity. We conclude from these studies that stimuli that drive physical association of CD4 and the TCR strongly favor T cell activation, supporting the coreceptor hypothesis of CD4 function.  相似文献   

19.
The tumor suppressor gene p27(Kip1) plays a fundamental role in human cancer progression. Its expression and/or functions are altered in almost all the different tumor histotype analyzed so far. Recently, it has been demonstrated that the tumor suppression function of p27 resides not only in the ability to inhibit Cyclins/CDKs complexes through its N-terminal domain but also in the capacity to modulate cell motility through its C-terminal portion. Particular interest has been raised by the last amino-acid, (Threonine 198) in the regulation of both protein stability and cell motility.Here, we describe that the presence of Threonine in position 198 is of primary importance for the regulation of the protein stability and for the control of cell motility. However, while the control of cell motility is dependent on the phosphorylation of T198, the stability of the protein is specifically controlled by the steric hindrance of the last amino acid. The effects of T198 modification on protein stability are not linked to the capacity of p27 to bind Cyclins/CDKs complexes and/or the F-box protein Skp2. Conversely, our results support the hypothesis that conformational changes in the disordered structure of the C-terminal portion of p27 are important in its ability to be degraded via a proteasome-dependent mechanism. On the other hand T198 phosphorylation favors p27/stathmin interaction eventually contributing to the regulation of cell motility, supporting the hypothesis that the presence of T198 is fundamental for the regulation of p27 functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号