首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hilhorst HW 《Plant physiology》1990,94(3):1096-1102
The role of nitrate as a promoter of germination of Sisymbrium officinale seeds was examined in optimal light conditions. It was shown that the requirement for nitrate was absolute. This was true for all seed lots used. The probit of germination in water was log-linearly related to the level of endogenous nitrate. Preincubation at 15°C resulted in an immediate decrease in germination, whereas in 25 millimolar KNO3 the decrease was delayed. The decline of germination in water was strongly correlated with the rate at which nitrate leached from the seeds. The germination response to a range of KNO3 concentrations was followed during preincubation at 24-hour intervals. During the entire 264-hour preincubation period increasingly higher nitrate concentrations were required to maintain a response. This resulted in a right-hand shift of the dose-response curve parallel to the x axis. After 120 hours the high maximum germination level started to decline. The dose-response curves could be simulated by an equation from the receptor-occupancy theory. It is proposed that induction of secondary dormancy is a result of a decrease of the number of nitrate receptors. After 24 and 48 hours of preincubation, the nitrate-response curves were biphasic. The biphasic character could be related to the level of endogenous nitrate and to a differential requirement for nitrate of two fractions of the seed population. Similarities with the behavior of fluence-response curves after prolonged dark incubation led to the hypothesis that phytochrome and nitrate share the same site of action.  相似文献   

2.
The fluence-response curves for the effect of two red pulses separated by 24 hours on the germination of Kalanchoe blossfeldiana Poelln. cv Vesuv seeds, incubated on gibberellic acid (GA3) are biphasic for suboptimal concentrations. The response in the low fluence range corresponds with a classical red/far-red reversible phytochrome mediated reaction. GA3 induces an additional response in the very low fluence range, which is also phytochrome mediated. The sensitivity to phytochrome-far-red absorbing form (Pfr), however, is increased about 20,000-fold, so that even far-red fluences become saturating. Both in the very low and low fluence response range, the maximal responses induced by saturating fluences are modulated by the GA3 concentration. GA3 having no direct influence on the phytochrome phototransformations, alters the Pfr requirement and determines the responding seed population fraction in the very low and low fluence range. The effet of GA3 appears to be on the transduction chain of the phytochrome signal.  相似文献   

3.
J. W. Cone  R. E. Kendrick 《Planta》1985,163(1):43-54
The fluence-response curves of wildtype and long-hypocotyl mutants of Arabidopsis thaliana L. for induction and inhibition of seed germination, expressed as percentage germination on probit scale against logarithm of fluence, are very different in shape. The mutants show reduced photoinhibition of hypocotyl growth in white light compared with wildtype, suggesting they are either mutated in phytochrome, the blue/UV-absorbing photosystem or some other red-absorbing photosystem. Calculations of the amount of the far-red-absorbing form of phytochrome (Pfr), by a given fluence have been made taking into account pre-existing Pfr in the seeds. This pre-existing Pfr can change dramatically the slope of a fluence-response curve. Other factors such as an overriding factor, stimulating germination by a non-phytochrome-related process, the total phytochrome content, the range of normal distribution of logarithm of Pfr requirement of individuals in the population and differential screening can influence the form and-or position of a fluence-response curve. Action spectra calculated for germination induction and for the inhibition of induction for the different genotypes are qualitatively the same, having peaks of effectiveness at 660 nm and 730 nm respectively. In the blue region of the spectrum very little activity is seen in comparison with that of red light. Differences in bandwidth of effectiveness for induction of germination are attributed to different amounts of screening pigments in the seed batches. The long-hypocotyl mutants therefore have a normal phytochrome system operative in the control of seed germination, by short-term irradiation and no other photosystem appears to be involved.Abbreviations and symbols FR far-red light - P phytochrome - Pfr far-red-absorbing form of P - Pr red-absorbing form of P - R red light - SD standard deviation of logarithm Pfr around - logarithm Pfr required for 50% germination - aparent molar conversion cross section - maximum Pfr/Ptot established by a given wave-length - 0 initial Pfr  相似文献   

4.
Both red light (10 minutes) and 35°C treatment (60 minutes) stimulate the germination of seeds of Rumex obtusifolius otherwise maintained in darkness at 25°C. Fluence response curves were determined for the effect of red light to stimulate germination of seeds with and without 35°C treatment. The endogenous far-red absorbing form (Pfr) level in the seeds was determined using short saturating fluences of wavelengths of light which maintain different proportions of phytochrome as Pfr at equilibrium. In the seed batches investigated, the endogenous Pfr level was found to be 4% or less of the total phytochrome. High dark germination after 35°C treatment does not result from an increase in sensitivity of the whole population to Pfr. Calculated fluence response curves for germination which best fit the experimental data suggest that seeds germinate in darkness after 35°C treatment because of a nonphytochrome-related process (overriding factor).  相似文献   

5.
Soybean (Glycine max L. cv Williams) seeds were sown in pots containing a 1:1 perlite-vermiculite mixture and grown under greenhouse conditions. Nodules were initiated with a nitrate reductase expressing strain of Rhizobium japonicum, USDA 110, or with nitrate reductase nonexpressing mutants (NR 108, NR 303) derived from USDA 110. Nodules initiated with either type of strain were normal in appearance and demonstrated nitrogenase activity (acetylene reduction). The in vivo nitrate reductase activity of N2-grown nodules initiated with nitrate reductase-negative mutant strains was less than 10% of the activity shown by nodules initiated with the wild-type strain. Regardless of the bacterial strain used for inoculation, the nodule cytosol and the cell-free extracts of the leaves contained both nitrate reductase and nitrite reductase activities. The wild-type bacteroids contained nitrate reductase but not nitrite reductase activity while the bacteroids of strains NR 108 and NR 303 contained neither nitrate reductase nor nitrite reductase activities.

Addition of 20 millimolar KNO3 to bacteroids of the wild-type strain caused a decrease in nitrogenase activity by more than 50%, but the nitrate reductase-negative strains were insensitive to nitrate. The nitrogenase activity of detached nodules initiated with the nitrate reductase-negative mutant strains was less affected by the KNO3 treatment as compared to the wild-type strain; however, the results were less conclusive than those obtained with the isolated bacteroids.

The addition of either KNO3 or KNO2 to detached nodules (wild type) suspended in a semisolid agar nutrient medium caused an inhibition of nitrogenase activity of 50% and 65% as compared to the minus N controls, and provided direct evidence for a localized effect of nitrate and nitrite at the nodule level. Addition of 0.1 millimolar sucrose stimulated nitrogenase activity in the presence or absence of nitrate or nitrite. The sucrose treatment also helped to decrease the level of nitrite accumulated within the nodules.

  相似文献   

6.
Roots of decapitated maize seedlings (Zea mays L.) were exposed for 12 hours to 1.0 millimolar KNO3 (98.5 atom per cent 15N) in the presence and absence (control) of 0.1 millimolar p-fluorophenylalanine (FPA), an analog of the amino acid phenylalanine. FPA decreased nitrate uptake but had little effect on potassium uptake. In contrast, accumulation of both ions in the xylem exudate was greatly restricted. The proportion of reduced 15N-nitrogen that was translocated at each time was also restricted by FPA. These observations are interpreted as indicating that synthesis of functional protein(s) is required for nitrate uptake and for transport of potassium, nitrate, and reduced-15N from xylem parenchyma cells into xylem elements. The effect of FPA on nitrate reduction is less clear. Initially, FPA limited nitrate reduction more than nitrate uptake, but by 8 hours the cumulative reduction of entering nitrate was similar (~35%) in both control and FPA-treated roots. A relationship between nitrate uptake and nitrate reduction is implied. It is suggested that nitrate influx regulates the proportion of nitrate reductase in the active state, and thereby regulates concurrent nitrate reduction in decapitated maize seedlings.  相似文献   

7.
Biphasic fluence response curves for induction of seed germination   总被引:4,自引:2,他引:2       下载免费PDF全文
Fluence-response curves for the induction of seed germination after 24 hours pretreatment at 35°C of Rumex obtusifolius and Arabidopsis thaliana show two phases of response: (a) a very low fluence-response (10−4 - 10−1 micromoles per square meter) and (b) a low fluence-response (1 - 103 micromoles per square meter).  相似文献   

8.
Abstract With appropriate pretreatment of the seeds fluence-response curves for the induction of germination of Arabidopsis thaliana show two phases. A proportion of the population responds to very low fluence (VLFR), 104–10?2μmolm?2 establishing 10?4–10?2% of the total phytochrome in the far-red absorbing form (Pfr) and a proportion of the population respond to low fluence (LFR), 1–1000 μmolm?2, establishing 1–75% Pfr. The VLFR is nol normally seen because the pre-existing Pfr level satisfies the Pfr requirement or use of green safelight establishes more Pfr than necessary to saturate the VLFR. Endogenous Pfr was depicted by a 24 h 35°C treatment, presumably as a result of dark destruction and/or dark reversion to the red absorbing form of phytochrome (Pr), making it possible to visualize the VLFR. A short pulse of 35°C treatment in combination with an appropriate temperature regime is also able to sensitize a proportion of the seed population. The proportion of the population showing the VLFR is determined by the duration of the cold imbibition pretreatment as well as the duration of the 35°C treatment. Complex fluence-response curves were observed in which a proportion of the seeds being promoted in the VLFR range, were inhibited at higher fluences before being further promoted in the LFR range. This was particularly clear for seed batches being sensitized by a short 35°C treatment. The VLFR may be of significance in the natural environment, enabling seeds buried in the upper layer of the soil to germinate, where the fluence rate falls off sharply and the LFR is not satisfied. A model is presented to explain the two phases in the fluence-response curves.  相似文献   

9.
The influence of nutrient nitrate level (0-20 millimolar) on the effects of NO2 (0-0.5 parts per million) on nodulation and in vivo acetylene reduction activity of the roots and on growth and nitrate and Kjeldahl N concentration in shoots was studied in bean (Phaseolus vulgaris L. cv Kinghorn Wax) plants. Exposing 8-day old seedlings for 6 hours each day, for 15 days, to 0.02 to 0.5 parts per million NO2 decreased total nodule weight at 0 and 1 millimolar nitrate, and nitrogenase (acetylene reduction) activity at all concentrations of nitrate. The pollutant had little effect on root fresh or dry weights. Shoot growth was inhibited by NO2. The NO2 exposure increased nitrate concentration in roots only at 20 millimolar nutrient nitrate. Exposure to NO2 markedly increased Kjeldahl N concentration in roots but generally decreased that in shoots. The experiments demonstrated that nutrient N level and NO2 concentration act jointly in affecting nodulation and N fixing capability, plant growth and composition, and root/shoot relationships of bean plants.  相似文献   

10.
Dupont FM 《Plant physiology》1987,84(2):526-534
The effects of NO3 and assay temperature on proton translocating ATPases in membranes of barley (Hordeum vulgare L. cv California Mariout 72) roots were examined. The membranes were fractionated on continuous and discontinuous sucrose gradients and proton transport was assayed by monitoring the fluorescence of acridine orange. A peak of H+-ATPase at 1.11 grams per cubic centimeter was inhibited by 50 millimolar KNO3 when assayed at 24°C or above and was tentatively identified as the tonoplast H+-ATPase. A smaller peak of H+-ATPase at 1.16 grams per cubic centimeter, which was not inhibited by KNO3 and was partially inhibited by vanadate, was tentatively identified as the plasma membrane H+-ATPase. A step gradient gave three fractions enriched, respectively, in endoplasmic reticulum, tonoplast ATPase, and plasma membrane ATPase. There was a delay before 50 millimolar KNO3 inhibited ATP hydrolysis by the tonoplast ATPase at 12°C and the initial rate of proton transport was stimulated by 50 millimolar KNO3. The time course for fluorescence quench indicated that addition of ATP in the presence of KNO3 caused a pH gradient to form that subsequently collapsed. This biphasic time course for proton transport in the presence of KNO3 was explained by the temperature-dependent delay of the inhibition by KNO3. The plasma membrane H+-ATPase maintained a pH gradient in the presence of KNO3 for up to 30 minutes at 24°C.  相似文献   

11.
Wheat seedlings (Triticum vulgare) treated with 1 mm KNO3 or NaNO3, in the presence of 0.2 mm CaSO4, were compared during a 48-hour period with respect to nitrate uptake, translocation, accumulation and reduction; cation uptake and accumulation; and malate accumulation. Seedlings treated with KNO3 absorbed and accumulated more nitrate, had higher nitrate reductase levels in leaves but less in roots, accumulated 17 times more malate in leaves, and accumulated more of the accompanying cation than seedlings treated with NaNO3. Within seedlings of each treatment, changes in nitrate reductase activity and malate accumulation were parallel in leaves and in roots. Despite the great difference in malate accumulation, leaves of the KNO3-treated seedlings had only slightly greater levels of phosphoenolpyruvate carboxylase than leaves of NaNO3-treated seedlings. NADP-malic enzyme levels increased only slightly in leaves and roots of both KNO3- and NaNO3-treated seedlings. The effects of K+ and Na+ on all of these parameters can best be explained by their effects on nitrate translocation, which in turn affects the other parameters. In a separate experiment, we confirmed that phosphoenolpyruvate carboxylase activity increased about 2-fold during 36 hours of KNO3 treatment, and increased only slightly in the KCl control.  相似文献   

12.
Two brief red (R) irradiations, separated by 24 hours, given to Kalanchoë blossfeldiana Poelln. cv Feuerblüte seeds, made secondarily dormant by a prolonged dark incubation period on water and transferred to GA3, induce very low germination. Some effect of these irradiations is preserved, however, during a long dark interval in fully imbibed seeds and greatly increases the germination induced by another brief R exposure. This long-lasting light effect is, at 20°C, only lost after a dark interval of about 1 month. It can also be induced by two brief far-red (FR) exposures. Its preservation is temperature-dependent, low temperatures being favorable. Light-induced changes in the ATP-content were demonstrated during preservation and expression of the long-lasting light effect, indicating a long-lasting metabolic change. In seeds with primary dormancy sown on GA3, an analogous long-lasting light effect is induced by one or two brief R or FR irradiations, even when they are given before germination can take place. The presence of GA3, which was shown to induce a very low fluence germination response in Kalanchoë seeds, is required for the occurrence of the long-lasting light effect. The data suggest long-term preservation of some effect(s) of Pfr rather than persistent presence of Pfr itself.  相似文献   

13.
The influence of nutrient nitrate level (0-20 millimolar) on the effects of NO2 (0-0.5 parts per million) on growth, K, photosynthetic pigment, N contents, and the activities of enzymes of N assimilation was studied in bean (Phaseolus vulgaris L. cv Kinghorn Wax) leaves. Exposing 7-day old bean seedlings for 5 days continuously to 0.02 to 0.5 parts per million NO2 increased plant height, fresh weight, chlorophyll, carotenoid, organic N and nitrate contents, and nitrate reductase and glutamate synthase activities in the leaves of seedlings supplied with no external N. At 20 millimolar nitrate, most of the parameters examined were inhibited except for organic N and nitrate contents and glutamate synthase activity which increased in most cases. Generally, with an increase in NO2 concentration, the stimulatory effect declined and/or the inhibitory effect increased. A 3-hour exposure of 12-day-old bean seedlings to 0.1 to 2.0 parts per million NO2 increased nitrate content and nitrate reductase activity at each nutrient nitrate level except for a slight inhibition of enzyme activity during exposure to 2.0 parts per million NO2 at 20 millimolar nitrate. The experiments demonstrated that the effect of NO2 is strongly influenced by nutrient N level and that NO2 is assimilated into organic nitrogenous compounds to serve as a source of N, only to a limited extent.  相似文献   

14.
The activity of NaN3 (0.5 millimolar), hydroxylamine-HCl (10-18 millimolar), and potassium cyanide (1 millimolar) as dormancy-breaking agents of dehulled red rice (Oryza sativa) is pH-dependent such that medium pH values favoring formation of the uncharged chemical species resulted in the highest germination percentages. There was no promotive effect of pH itself in the range of 3 to 10. The minimum contact times for maximum response (≥90% germination) to NaN3, KCN, and NH2OH-HCl are 8 hours at pH 4, 24 hours at pH 8, and 72 hours at pH 6 or 7, respectively, for exposure commencing at the start of imbibition. Dehulled seeds, imbibed first in water, show only slightly reduced germination when subsequently transferred to solutions of dormancy-breaking chemicals.

Intact seeds remain dormant in the presence of NaN3, KCN, or NH2OH-HCl unless partially dry-afterripened. The pH dependence of these chemicals is reduced in intact, afterripening seeds.

  相似文献   

15.
Bromphenol blue, which was reduced with dithionite, was found to support nitrate reduction catalyzed by squash NADH:nitrate reductase at a rate about 5 times greater than NADH with freshly prepared enzyme and 10 times or more with enzyme having been frozen and thawed. Kinetic analysis of bromphenol blue as a substrate for squash nitrate reductase yielded apparent Km values of 60 micromolar for bromphenol blue at 10 millimolar nitrate and 500 micromolar for nitrate at 0.2 millimolar bromphenol blue. With the same preparation of enzyme the apparent Km values were 9 micromolar for NADH at 10 millimolar nitrate and 50 micromolar nitrate at 0.1 millimolar NADH. Bromphenol blue was found to be a noncompetitive inhibitor versus NADH with a Ki of 0.3 millimolar. When squash NADH:nitrate reductase activity was inactivated with p-hydroxymercuribenzoate or denatured by heating at 40°C, the bromphenol blue nitrate reductase activity was not lost. These results were taken to indicate that bromphenol blue and NADH donated electrons to nitrate reductase at different sites. When monoclonal antibodies prepared against corn and squash nitrate reductases were used to inhibit the nitrate reductase activities supported by NADH, bromphenol blue, and methyl viologen, differential inhibition was found which tended to indicate that the three electron donors were interacting with the enzyme at different sites. One monoclonal antibody prepared against squash nitrate reductase inhibited all three activities of both corn and squash nitrate reductase. It appears this antibody may bind to a highly conserved antigenic site in the nitrate binding region of the enzyme.  相似文献   

16.
Excised 7-day-old oat (Avena sativa L. cv. Jaycee) leaves were incubated in media containing 7.1 millimolar KNO3 and 0.15 millimolar tabtoxin or 1 millimolar methionine sulfoximine (MSO) to investigate the sources of the observed ammonium accumulated. Tabtoxin and MSO are known inhibitors of glutamine synthetase, the first enzyme in the primary pathway of ammonium assimilation. During a 4- to 6-hour incubation, there was little net change in protein or total amino acid concentration. Alanine, aspartate/asparagine, and glutamate/glutamine decreased markedly under these treatments, whereas several other amino acids increased. Exogenous 15N from K15NO3 was taken up and incorporated into the nitrate and ammonium fractions of leaves treated with tabtoxin or MSO. This result and the high in vitro activities of nitrate reductase indicated that reduction of nitrate was one source of the accumulated ammonium. Leaves incubated under 2% O2 to reduce photorespiration accumulated only about 13% as much ammonium as did those under normal atmospheres. We conclude that most of the tabtoxin- or MSO-induced ammonium came from photo-respiration, and the remainder was from nitrate reduction.  相似文献   

17.
Effects of Na application on the capacity of NO3 assimilation were studied in Na-deficient Amaranthus tricolor L. cv Tricolor plants. On day 30 after germination, Na-deficient A. tricolor plants received either 0.5 millimolar NaCl or KCl. The level of nitrate reductase activity doubled within 24 hours by the addition of Na and the enhanced level was maintained thereafter. When the plants were exposed to 2 millimolar 15NO3, total 15N taken up by the plants was greater in the Na-treated plants than in the K-treated plants within 24 hours of the Na treatment. Incorporation of 15N into the 80% ethanol-insoluble nitrogen fraction of the Na-treated plants in the light period was about 260% of those of the K-treated plants indicating greater capacity of NO3 assimilation in the Na-treated plants. From these results, it was demonstrated that Na application to the Na-deficient A. tricolor plants promoted NO3 reduction and its subsequent assimilation into protein, resulting in growth enhancement.  相似文献   

18.
Experiments were designed to study the importance of organic acids as counterions for K+ translocation in the xylem during excess cation uptake. A comparison was made of xylem exudate from wheat seedlings treated 72 hours with either 1.0 millimolar KNO3 or 0.5 millimolar K2SO4, both in the presence of 0.2 millimolar CaSO4. Exudation from KNO3 plants had twice the volume and twice the K+ and Ca2+ fluxes or rate of delivery to shoots, as K2SO4 plants. Malate flux was 25% higher in K2SO4 than in KNO3 exudate. Malate was the principal anion accompanying K+ or Ca2+ in K2SO4 treatment, while in the KNO3 treatment, NO3 was the principal anion. The contribution of SO42− was negligible in both treatments. In a second experiment, exudate was collected every 4 hours during the daytime throughout a 72-hour treatment with KNO3. Malate was the only anion present in exudate at first, just after the CaSO4 pretreatment had ended. Malate concentration decreased and NO3 concentration increased with time and these concentrations were negatively correlated. By 62 hours, NO3 represented 80% of exudate anions. K+ and NO3 concentrations in exudate were strongly correlated with K+ and NO3 uptake, respectively. The first 36 hours of absorption from KNO3 solution resembled the continuous absorption of K2SO4, in that malate was the principal counterion for translocation of K+.  相似文献   

19.
Abstract

Desert plant species commonly use seed dormancy to prevent germination during unfavorable environmental conditions and thus increase the probability of seedling survival. Seed dormancy presents a challenge for restoration ecology, particularly in desert species for which our knowledge of dormancy regulation is limited. In the present study the effect of gibberellic acid (GA3) and potassium nitrate (KNO3) on seed dormancy release was investigated on eight Arabian desert species. Both treatments significantly enhanced the germination of most species tested. GA3 was more effective than KNO3 in enhancing germination percentage, reducing mean germination time and synchronizing the germination in most of the studied species. Light requirement during germination was species-specific, but in general the presence of light promoted germination more effectively when combined with KNO3 and GA3. The wide variation in dormancy and germination requirements among the tested species is indicative of distinct germination niches, which might assist their co-existence in similar habitat/environmental conditions. Seed pre-treatments that optimize germination in this habitat must therefore be assessed for individual species to improve the outcomes of ecological restoration.  相似文献   

20.
Smith WO  Cyr KL 《Plant physiology》1988,87(1):195-200
Phytochrome extracted from shoots of dark-grown rye (Secale cereale cv Rymin) and oat (Avena sativa cv Garry) as the far-red-form (Pfr) and/or under conditions conducive to oxidation exhibited a blue shift in the visible absorption maximum of its red-light-absorbing form (Pr) relative to that measured in vivo. This spectral alteration could not be reversed but could be prevented by inclusion of 10 millimolar diethyldithiocarbamate and 140 millimolar 2-mercaptoethanol in homogenization buffers. Similar blue shifts were induced in purified rye phytochrome by addition of the sulfhydryl-modifying reagent, 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). In spectrally normal phytochrome (i.e., no detectable blue shift), Pfr had three to four more sulfhydryls available for rapid reaction with DTNB than did Pr. This difference was maintained over a 2.5-hour time course. Phytochrome purified under conditions resulting in a blue-shifted Pr absorption maximum exhibited a decreased short-term reactivity of Pfr to DTNB. Comparison of the binding and elution of altered and unaltered phytochrome from agarose-immobilized Cibacron blue 3GA confirmed that the Pfr form of spectrally normal phytochrome had a greater affinity for the dye than did the Pr form but that spectral alteration of phytochrome was accompanied by a loss of this difference as evidenced by an increased binding of Pr to the dye. It was concluded that phytochrome has highly reactive sulfhydryl residues located on the portion of the protein that undergoes conformational changes on interconversion of Pr and Pfr and that these residues require rigorous protection in order to extract the native form of the protein from plant tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号