首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, we describe RapA-dependent polyadenylation of model RNA substrates and endogenous, RNA polymerase-associated nucleic acid fragments. We demonstrate that the Escherichia coli RNA polymerase obtained through the classic purification procedure carries endogenous RNA oligonucleotides, which, in the presence of ATP, are polyriboadenylated in a RapA-dependent manner by an accessory poly(rA) polymerase. RNA polymerase isolated from poly(A) polymerase- (PAP-) and polynucleotide phosphorylase- (PNP-) deficient E. coli strain lacks accessory (rA)(n)-synthetic activity. Experiments with reconstituted RNA polymerase-PAP and RNA polymerase-PNP mixtures suggest that RapA enables the polyadenylation by PAP of RNA polymerase-associated RNA. Mutations disrupting RapA's ATP-hydrolytic function disrupt RapA-dependent polyadenylation, and the rapA(-)E. coli strain displays a measurable reduction in RNA polyadenylation. RapA-dependent polyadenylation can also be modulated by mutations in the section of RapA's SWI/SNF domain linked to interaction with single-stranded nucleic acid. We have developed enzymatic assays in which model, synthetic RNAs are polyriboadenylated in a RapA-dependent manner. Taken together, our results are consistent with RapA acting as an RNA polymerase-associated, ATP-dependent RNA translocase. Our work further links RapA to RNA remodeling and provides new mechanistic insights into the functional interaction between RNA polymerase and RapA.  相似文献   

2.
3.
4.
HLTF is highly similar in domain organisation to yeast Rad5. We identify PTIP and RPA70, both involved in DNA replication and DNA repair, as HLTF-interacting proteins although cells depleted of HLTF did not show defects in cellular responses to DNA damage. In vitro, HLTF has ATPase activity and E3 ubiquitin ligase activity with a range of E2 ubiquitin conjugating enzymes. HLTF expression is severely reduced in a range of cancer cells, and we suggest that the HLTF antibodies generated in this study could be used for cancer diagnostic purposes.  相似文献   

5.
6.
7.
8.
The structure of the SWI/SNF-remodeled nucleosome was characterized with single base-pair resolution by mapping the contacts of specific histone fold residues with nucleosomal DNA. We demonstrate that SWI/SNF peels up to 50 bp of DNA from the edge of the nucleosome, translocates the histone octamer beyond the DNA ends via a DNA bulge propagation mechanism, and promotes the formation of an intramolecular DNA loop between the nucleosomal entry and exit sites. This stable altered nucleosome conformation also exhibits alterations in the distance between contacts of specific histone residues with DNA and higher electrophoretic and sedimentation mobility, consistent with a more compact molecular shape. SWI/SNF converts a nucleosome to the altered state in less than 1 s, hydrolyzing fewer than 10 ATPs per event.  相似文献   

9.
Bacterial RNA polymerase and eukaryotic RNA polymerase II exhibit striking structural similarities, including similarities in overall structure, relative positions of subunits, relative positions of functional determinants, and structures and folding topologies of subunits. These structural similarities are paralleled by similarities in mechanisms of interaction with DNA.  相似文献   

10.
11.
12.
13.
The active DNA-dependent ATPase A domain (ADAAD), a member of the SWI2/SNF2 family, has been shown to bind DNA in a structure-specific manner, recognizing DNA molecules possessing double-stranded to single-stranded transition regions leading to ATP hydrolysis. Extending these studies we have delineated the structural requirements of the DNA effector for ADAAD and have shown that the single-stranded and double-stranded regions both contribute to binding affinity while the double-stranded region additionally plays a role in determining the rate of ATP hydrolysis. We have also investigated the mechanism of interaction of DNA and ATP with ADAAD and shown that each can interact independently with ADAAD in the absence of the other. Furthermore, the protein can bind to dsDNA as well as ssDNA molecules. However, the conformation change induced by the ssDNA is different from the conformational change induced by stem-loop DNA (slDNA), thereby providing an explanation for the observed ATP hydrolysis only in the presence of the double-stranded:single-stranded transition (i.e. slDNA).  相似文献   

14.
Synthesis of the modified thymine base beta-D-glucosyl-hydroxymethyluracil, or J, within telomeric DNA of Trypanosoma brucei correlates with the bloodstream-form-specific epigenetic silencing of telomeric variant surface glycoprotein genes involved in antigenic variation. The mechanism of developmental and telomeric-specific regulation of J synthesis is unknown. We have previously identified a J binding protein (JBP1) involved in propagating J synthesis. We have now identified a homolog of JBP1, JBP2, containing a domain related to the SWI2/SNF2 family of chromatin remodeling proteins that is upregulated in bloodstream form cells and interacts with nuclear chromatin. We show that expression of JBP2 in procyclic form cells leads to de novo J synthesis within telomeric regions of the chromosome and that this activity is inhibited after mutagenesis of conserved residues critical for SWI2/SNF2 function. We propose a model in which chromatin remodeling by JBP2 regulates the initial sites of J synthesis within bloodstream form trypanosome DNA, with further propagation and maintenance of J by JBP1.  相似文献   

15.
Complete deficiency in activity-dependent neuroprotective protein (ADNP), a heterochromatin 1-binding protein, results in dramatic changes in gene expression, neural tube closure defects, and death at gestation day 9 in mice. To further understand the cellular roles played by ADNP, the HEK293 human embryonic kidney cell line that allows efficient transfection with recombinant DNA was used as a model for the identification of ADNP-interacting proteins. Recombinant green fluorescent protein (GFP)-ADNP was localized to cell nuclei. When nuclear extracts were subjected to immunoprecipitation with specific GFP antibodies followed by polyacrylamide gel electrophoresis, several minor protein bands were observed in addition to GFP-ADNP. In-gel protein digests followed by mass spectrometry identified BRG1, BAF250a, and BAF170, all components of the SWI/SNF (mating type switching/sucrose nonfermenting) chromatin remodeling complex, as proteins that co-immunoprecipitate with ADNP. These results were verified utilizing BRG1 antibodies. ADNP short hairpin RNA down-regulation resulted in microtubule reorganization and changes in cell morphology including reduction in cell process formation and cell number. These morphological changes are closely associated with the SWI/SNF complex multifunctionality. Taken together, the current study uncovers a molecular basis for the essential function of the ADNP gene and protein.  相似文献   

16.
17.
18.
19.
The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.  相似文献   

20.
J Hamming  M Gruber    G AB 《Nucleic acids research》1979,7(4):1019-1033
The interaction between RNA polymerase and the E. coli ribosomal (r) RNA promoter(s) of the rrnE operon has been studied by the filter-binding method. The extent of complex formation between RNA polymerase and rrnE promoter(s) is salt-dependent; ppGpp specifically inhibits interaction of RNA polymerase with the rrnE promoter(s). A tentative model is proposed for the molecular events in the early steps of rRNA initiation: a transition of the primarily formed, labile RNA polymerase-rRNA promoter complex to a more stable form is the determining step. This step is salt-sensitive; ppGpp acts on this "isomerization".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号