首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been well established that articular cartilage is compositionally and mechanically inhomogenous through its depth. To what extent this structural inhomogeneity is a prerequisite for appropriate cartilage function and integrity is not well understood. The first hypothesis to be tested in this study was that the depth-dependent inhomogeneity of the cartilage acts to maximize the interstitial fluid load support at the articular surface, to provide efficient frictional and wear properties. The second hypothesis was that the inhomogeneity produces a more homogeneous state of elastic stress in the matrix than would be achieved with uniform properties. We have, for the first time, simultaneously determined depth-dependent tensile and compressive properties of human patellofemoral cartilage from unconfined compression stress relaxation tests. The results show that the tensile modulus increases significantly from 4.1 +/- 1.9 MPa in the deep zone to 8.3 +/- 3.7 MPa at the superficial zone, while the compressive modulus decreases from 0.73 +/- 0.26 MPa to 0.28 +/- 0.16 MPa. The experimental measurements were then implemented with the finite-element method to compute the response of an inhomogeneous and homogeneous cartilage layer to loading. The finite-element models demonstrate that structural inhomogeneity acts to increase the interstitial fluid load support at the articular surface. However, the state of stress, strain, or strain energy density in the solid matrix remained inhomogeneous through the depth of the articular layer, whether or not inhomogeneous material properties were employed. We suggest that increased fluid load support at the articular surface enhances the frictional and wear properties of articular cartilage, but that the tissue is not functionally adapted to produce homogeneous stress, strain, or strain energy density distributions. Interstitial fluid pressurization, but not a homogeneous elastic stress distribution, appears thus to be a prerequisite for the functional and morphological integrity of the cartilage.  相似文献   

2.
The knowledge of normal patellar tracking is essential for understanding the knee joint function and for diagnosis of patellar instabilities. This paper investigated the patellar tracking and patellofemoral joint contact locations during a stair ascending activity using a validated dual-fluoroscopic imaging system. The results showed that the patellar flexion angle decreased from 41.9° to 7.5° with knee extension during stair ascending. During first 80% of the activity, the patella shifted medially about 3.9mm and then slightly shifted laterally during the last 20% of the ascending activity. Anterior translation of 13mm of the patella was measured at the early 80% of the activity and the patella slightly moved posteriorly by about 2mm at the last 20% of the activity. The path of cartilage contact points was slightly lateral on the cartilage surfaces of patella and femur. On the patellar cartilage surface, the cartilage contact locations were about 2mm laterally from heel strike to 60% of the stair ascending activity and moved laterally and reached 5.3mm at full extension. However, the cartilage contact locations were relatively constant on the femoral cartilage surface (~5mm lateral). The patellar tracking pattern was consistent with the patellofemoral cartilage contact location pattern. These data could provide baseline knowledge for understanding of normal physiology of the patellofemoral joint and can be used as a reference for clinical evaluation of patellofemoral disorders.  相似文献   

3.
Recent studies have reported that certain regimes of compressive loading of articular cartilage result in increased cell death in the superficial tangential zone (STZ). The objectives of this study were (1) to test the prevalent hypothesis that preferential cell death in the STZ results from excessive compressive strain in that zone, relative to the middle and deep zones, by determining whether cell death correlates with the magnitude of compressive strain and (2) to test the corollary hypothesis that the viability response of cells is uniform through the thickness of the articular layer when exposed to the same loading environment. Live cartilage explants were statically compressed by approximately 65% of their original thickness, either normal to the articular surface (axial loading) or parallel to it (transverse loading). Cell viability after 12 h was compared to the local strain distribution measured by digital image correlation. Results showed that the strain distribution in the axially loaded samples was highest in the STZ (77%) and lowest in the deep zone (55%), whereas the strain was uniformly distributed in the transversely loaded samples (64%). In contrast, axially and transversely loaded samples exhibited very similar profiles of cell death through the depth, with a preferential distribution in the STZ. Unloaded control samples showed negligible cell death. Thus, under prolonged static loading, depth-dependent variations in chondrocyte death did not correlate with the local depth-dependent compressive strain, and the prevalent hypothesis must be rejected. An alternative hypothesis, suggested by these results, is that superficial zone chondrocytes are more vulnerable to prolonged static loading than chondrocytes in the middle and deep zones.  相似文献   

4.
Patellar resurfacing during knee replacement is still under debate, with several studies reporting higher incidence of anterior knee pain in unresurfaced patellae. Congruency between patella and femur impacts the mechanics of the patellar cartilage and strain in the underlying bone, with higher stresses and strains potentially contributing to cartilage wear and anterior knee pain. The material properties of the articulating surfaces will also affect load transfer between femur and patella. The purpose of this study was to evaluate the mechanics of the unresurfaced patella and compare with natural and resurfaced conditions in a series of finite element models of the patellofemoral joint. In the unresurfaced analyses, three commercially available implants were compared, in addition to an 'ideal' femoral component which replicated the geometry, but not the material properties, of the natural femur. Hence, the contribution of femoral component material properties could be assessed independently from geometry changes. The ideal component tracked the kinematics and patellar bone strain of the natural knee, but had consistently inferior contact mechanics. In later flexion, compressive patellar bone strain in unresurfaced conditions was substantially higher than in resurfaced conditions. Understanding how femoral component geometry and material properties in unresurfaced knee replacement alters cartilage contact mechanics and bone strain may aid in explaining why the incidence of anterior knee pain is higher in the unresurfaced population, and ultimately contribute to identifying criteria to pre-operatively predict which patients are suited to an unresurfaced procedure and reducing the incidence of anterior knee pain in the unresurfaced patient population.  相似文献   

5.
The pericellular matrix (PCM) is a narrow region of tissue that completely surrounds chondrocytes in articular cartilage. Previous theoretical models of the "chondron" (the PCM with enclosed cells) suggest that the structure and properties of the PCM may significantly influence the mechanical environment of the chondrocyte. The objective of this study was to quantify changes in the three-dimensional (3D) morphology of the chondron in situ at different magnitudes of compression applied to the cartilage extracellular matrix. Fluorescence immunolabeling for type-VI collagen was used to identify the boundaries of the cell and PCM, and confocal microscopy was used to form 3D images of chondrons from superficial, middle, and deep zone cartilage in explants compressed to 0%, 10%, 30%, and 50% surface-to-surface strain. Lagrangian tissue strain, determined locally using texture correlation, was highly inhomogeneous and revealed depth-dependent compressive stiffness and Poisson's ratio of the extracellular matrix. Compression significantly decreased cell and chondron height and volume, depending on the zone and magnitude of compression. In the superficial zone, cellular-level strains were always lower than tissue-level strains. In the middle and deep zones, however, tissue strains below 25% were amplified at the cellular level, while tissue strains above 25% were decreased at the cellular level. These findings are consistent with previous theoretical models of the chondron, suggesting that the PCM can serve as either a protective layer for the chondrocyte or a transducer that amplifies strain, such that cellular-level strains are more homogenous throughout the tissue depth despite large inhomogeneities in local ECM strains.  相似文献   

6.
Anterior cruciate ligament (ACL) deficient patients have an increased rate of patellofemoral joint (PFJ) osteoarthritis (OA) as compared to the general population. Although the cause of post-injury OA is multi-factorial, alterations in joint biomechanics may predispose patients to cartilage degeneration. This study aimed to compare in vivo PFJ morphology and mechanics between ACL deficient and intact knees in subjects with unilateral ACL ruptures. Eight male subjects underwent baseline MRI scans of both knees. They then performed a series of 60 single-legged hops, followed by a post-exercise MRI scan. This process was repeated for the contralateral knee. The MR images were converted into three-dimensional surface models of cartilage and bone in order to assess cartilage thickness distributions and strain following exercise. Prior to exercise, patellar cartilage was significantly thicker in intact knees as compared to ACL deficient knees by 1.8%. In response to exercise, we observed average patellar cartilage strains of 5.4 ± 1.1% and 2.5 ± 1.4% in the ACL deficient and intact knees, respectively. Importantly, the magnitude of patellar cartilage strain in the ACL deficient knees was significantly higher than in the intact knees. However, while trochlear cartilage experienced a mean strain of 2.4 ± 1.6%, there was no difference in trochlear cartilage strain between the ACL deficient and uninjured knees. In summary, we found that ACL deficiency was associated with decreased patellar cartilage thickness and increased exercise-induced patellar cartilage strain when compared to the uninjured contralateral knees.  相似文献   

7.
We examined the localization and boundary lubricating function of superficial zone protein (SZP) on the surface of mandibular condylar cartilage. Chondrocytes were separated from the surface layer of mandibular condylar cartilage of 6- to 9-month-old female pigs. A cyclic tensile strain of 7% or 21% cell elongation was applied to the cultured chondrocytes. Gene expression levels of cartilage matrix proteins and secretory phospholipase A2 (sPLA2) were quantified by real-time polymerase chain reaction analysis. The friction coefficient of the mandibular condylar surface was measured by a friction tester before and after treatment with 0.1 U/ml sPLA2. Significantly higher mRNA levels of SZP and type I collagen were found in chondrocytes from the superficial layer than in those in the other layers. The SZP mRNA level was up-regulated by cyclic tensile strain of 7% and 21% cell elongation. Cyclic tensile strain of 21% cell elongation up-regulated the sPLA2 mRNA level. The friction coefficient of the condylar surface was increased significantly by treatment with sPLA2. The removal of SZP from the surface layer of mandibular condylar cartilage by sPLA2 resulted in a significant increase in the friction coefficient on the surface of articular cartilage.  相似文献   

8.
C Bertram  W Lierse 《Acta anatomica》1991,140(2):183-192
In 25 human femoral heads, the structural changes in the chondrocyte cavities of prearthrotic cartilage were determined in three different layers by detailed morphometric evaluation. As examination parameters, the area, perimeter, diameter, and the form deviation from a circle (form PE) were chosen. In addition, we calculated the numeric cell density and the mean distance between two chondrocyte cavities. For intraindividual comparison, the same data were obtained from nondegeneratively changed cartilage areas of each femoral head. The main arthrotic regions were located in the weight-bearing area of the femoral head, particularly in the dorso- and ventrolateral quadrants. The number of chondrocyte cavities as well as the numeric cell density were decreasing from superficial to basal layers, whereas the mean distance between two chondrocyte cavities was increasing. Concerning these parameters, no significant differences were seen between the prearthrotic and control groups. We found that the chondrocyte cavities in the superficial layer in prearthrotic areas show a tendency to smaller volumes in comparison with nondegeneratively changed areas, whereas in the basal layer, no difference could be seen. We presume that the changes in the articular cartilage are not related to an insufficient supply of the cartilage with nutriments, but probably to the high mechanical strain applied to its surface.  相似文献   

9.
Collagen fibrils of articular cartilage have specific depth-dependent orientations and the fibrils bend in the cartilage surface to exhibit split-lines. Fibrillation of superficial collagen takes place in osteoarthritis. We aimed to investigate the effect of superficial collagen fibril patterns and collagen fibrillation of cartilage on stresses and strains within a knee joint. A 3D finite element model of a knee joint with cartilage and menisci was constructed based on magnetic resonance imaging. The fibril-reinforced poroviscoelastic material properties with depth-dependent collagen orientations and split-line patterns were included in the model. The effects of joint loading on stresses and strains in cartilage with various split-line patterns and medial collagen fibrillation were simulated under axial impact loading of 1000 N. In the model, the collagen fibrils resisted strains along the split-line directions. This increased also stresses along the split-lines. On the contrary, contact and pore pressures were not affected by split-line patterns. Simulated medial osteoarthritis increased tissue strains in both medial and lateral femoral condyles, and contact and pore pressures in the lateral femoral condyle. This study highlights the importance of the collagen fibril organization, especially that indicated by split-line patterns, for the weight-bearing properties of articular cartilage. Osteoarthritic changes of cartilage in the medial femoral condyle created a possible failure point in the lateral femoral condyle. This study provides further evidence on the importance of the collagen fibril organization for the optimal function of articular cartilage.  相似文献   

10.
For this study, we hypothesized that the depth-dependent compressive equilibrium properties of articular cartilage are the inherent consequence of its depth-dependent composition, and not the result of depth-dependent material properties. To test this hypothesis, our recently developed fibril-reinforced poroviscoelastic swelling model was expanded to include the influence of intra- and extra-fibrillar water content, and the influence of the solid fraction on the compressive properties of the tissue. With this model, the depth-dependent compressive equilibrium properties of articular cartilage were determined, and compared with experimental data from the literature. The typical depth-dependent behavior of articular cartilage was predicted by this model. The effective aggregate modulus was highly strain-dependent. It decreased with increasing strain for low strains, and increases with increasing strain for high strains. This effect was more pronounced with increasing distance from the articular surface. The main insight from this study is that the depth-dependent material behavior of articular cartilage can be obtained from its depth-dependent composition only. This eliminates the need for the assumption that the material properties of the different constituents themselves vary with depth. Such insights are important for understanding cartilage mechanical behavior, cartilage damage mechanisms and tissue engineering studies.  相似文献   

11.
Collagen fibrils networks in knee cartilage and menisci change in content and structure from a region to another. While resisting tension, they influence global joint response as well as local strains particularly at short-term periods. To investigate the role of fibrils networks in knee joint mechanics and in particular cartilage response, a novel model of the knee joint is developed that incorporates the cartilage and meniscus fibrils networks as well as depth-dependent properties in cartilage. The joint response under up to 2000 N compression is investigated for conditions simulating the absence in cartilage of deep fibrils normal to subchondral bone or superficial fibrils parallel to surface as well as localized split of cartilage at subchondral junction or localized damage to superficial fibrils at loaded areas. Deep vertical fibrils network in cartilage play a crucial role in stiffening (by 10%) global response and protecting cartilage by reducing large strains (from maximum of 102% to 38%), in particular at subchondral junction. Superficial horizontal fibrils protect the tissue mainly from excessive strains at superficial layers (from 27% to 8%). Local cartilage split at base disrupts the normal function of vertical fibrils at the affected areas resulting in higher strains.Deep fibrils, and to a lesser extent superficial fibrils, play dominant mechanical roles in cartilage response under transient compression. Any treatment modality attempting to repair or regenerate cartilage defects involving partial or full thickness osteochondral grafts should account for the crucial role of collagen fibrils networks and the demanding mechanical environment of the tissue.  相似文献   

12.
The mechanical environment is an important factor affecting the maintenance and adaptation of articular cartilage, and thus the function of the joint and the progression of joint degeneration. Recent evidence suggests that cartilage deformation caused by mechanical loading is directly associated with deformation and volume changes of chondrocytes. Furthermore, in vitro experiments have shown that these changes in the mechanical states of chondrocytes correlate with a change in the biosynthetic activity of cartilage cells. The purpose of this study was to apply our knowledge of contact forces within the feline patellofemoral joint to quantify chondrocyte deformation in situ under loads of physiological magnitude. A uniform, static load of physiological magnitude was applied to healthy articular cartilage still fully intact and attached to its native bone. The compressed cartilage was then chemically fixed to enable the evaluation of cartilage strain, chondrocyte deformation and chondrocyte volumetric fraction. Patella and femoral groove articular cartilages differ in thickness, chondrocyte aspect ratio, and chondrocyte volumetric fraction in both magnitude and depth distribution. Furthermore, when subjected to the same compressive loads, changes to all of these parameters differ in magnitude and depth distribution between patellar and femoral groove articular cartilage. This evidence suggests that significant chondrocyte deformation likely occurs during in vivo joint loading, and may influence chondrocyte biosynthetic activity. Furthermore, we hypothesise that the contrasts between patella and femoral groove cartilages may explain, in part, the site-specific progression of osteoarthritis in the patellofemoral joint of the feline anterior cruciate ligament transected knee.  相似文献   

13.
Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50 MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus H(a) at two different layers, within which H(a) was assumed to be linearly dependent on the depth. The results showed that H(a) was 3.0+/-3.2, 7.0+/-7.4, 24.5+/-11.1 MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%+/-20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis.  相似文献   

14.
Elevated bone principal strain (an indicator of potential bone injury) resulting from reduced cartilage thickness has been suggested to contribute to patellofemoral symptoms. However, research linking patella bone strain, articular cartilage thickness, and patellofemoral pain (PFP) remains limited. The primary purpose was to determine whether females with PFP exhibit elevated patella bone strain when compared to pain-free controls. A secondary objective was to determine the influence of patella cartilage thickness on patella bone strain. Ten females with PFP and 10 gender, age, and activity-matched pain-free controls participated. Patella bone strain fields were quantified utilizing subject-specific finite element (FE) models of the patellofemoral joint (PFJ). Input parameters for the FE model included (1) PFJ geometry, (2) elastic moduli of the patella bone, (3) weight-bearing PFJ kinematics, and (4) quadriceps muscle forces. Using quasi-static simulations, peak and average minimum principal strains as well as peak and average maximum principal strains were quantified. Cartilage thickness was quantified by computing the perpendicular distance between opposing voxels defining the cartilage edges on axial plane magnetic resonance images. Compared to the pain-free controls, individuals with PFP exhibited increased peak and average minimum and maximum principal strain magnitudes in the patella. Additionally, patella cartilage thickness was negatively associated with peak minimum principal patella strain and peak maximum principal patella strain. The elevated bone strain magnitudes resulting from reduced cartilage thickness may contribute to patellofemoral symptoms and bone injury in persons with PFP.  相似文献   

15.
Strain shielding, a mechanical effect occurring in structures combining stiff with more flexible materials, is considered to lead to a reduction of density in bone surrounding the implant. This effect can be related to the weakness of the implant fixation, which can promote implant loosening. Several studies describe a significant decrease in postoperative bone mineral density adjacent to joint implants, which can compromise their long-term fixation. The aim of the present study was to quantify the strain shielding effect on the distal femur after patellofemoral arthroplasty. For this purpose three activities of daily living were considered: level walking, stair climbing and deep bending at different angles of knee flexion. To determine the strain shielding effect, cortical bone strains were measured experimentally with triaxial strain gauges in synthetic femurs before and after patellofemoral arthroplasty for each of the different daily activities. The results showed that the patellofemoral arthroplasty in general reduced the strains in the medial and distal regions of the femur when deep bending activity occurred, consequently, strain shielding in these regions, with strain decreases of ?72.0% and ?67.5% were measured. On the other side, higher values of strain were found in the anterior region after patellofemoral replacement for this activity with an increase of +182.0%. The occurrence of strain shielding seems to be more significant when the angle of knee flexion and applied load increases. Strain shielding and over-loading may have relevant effects on bone remodeling surrounding the patellofemoral implant, suggesting a potential effect of later bone resorption in the medial and distal femur regions in case of regular deep bending activity.  相似文献   

16.
A time- and depth-dependent Poisson’s ratio has been observed during unconfined compression experiments on articular cartilage, but existing cartilage models have not fully addressed these phenomena. The goal of this study was to develop a model which is able to predict and explain these phenomena, while also being able to fit other experimental scenarios on full depth cartilage specimens such as confined and unconfined compressions. A biphasic (poroelastic), fiber-embedded cartilage model was developed. The heterogeneous material properties of the cartilage (aggregate modulus, void ratio tensile modulus) were extracted from reported experiments on individual layers of bovine articular cartilage. The nonlinear permeability material constants were found by fitting the overall response to published experimental data from confined compression. The matrix of the cartilage was modelled as an inhomogeneous isotropic biphasic material with nonlinear strain dependent permeability. Orthotropic layers were added as embedded elements to represent collagen fibers. Material parameters for these layers were derived from tensile tests of different layers of cartilage. With these predefined tensile parameters, the model showed a good fit with multi-step confined and unconfined compression experiments (R2=0.984 and 0.977, respectively) and could also predict the depth-dependent Poisson’s ratio (R2=0.981). The highlight of the model is the ability to explain the time-depth dependent Poisson's ratio and, by association, the strong effect of material inhomogeneity on local stress and strain patterns within the cartilage layer. This material model’s response may provide valuable new insight into potential initiation of cartilage fibrillation or delamination in whole-joint simulations.  相似文献   

17.
Verteramo A  Seedhom BB 《Biorheology》2004,41(3-4):203-213
THE AIMS of this study were: (i) to investigate the variation in the tensile properties of articular cartilage with depth through cartilage thickness and fibre orientation; (ii) to determine the effect of strain rate on tensile properties of articular cartilage. MATERIALS AND METHOD: All experimental work was performed on cartilage specimens taken from two bovine knee joints. Osteochondral plugs 12 mm in diameter were harvested with a special reamer from the femur and the tibial plateaux of each knee. Slices (0.2 mm thick), of articular cartilage were cut from the plug with a microtome. The predominant orientation of the collagen fibres on the cartilage surface was determined using the pinpricking technique. Each specimen used for the tensile test was cut, so as to produce a dumbbell shape, with a gauge length of 6 mm. Uniaxial tensile tests were performed on each specimen in order to determine the tensile Young's modulus, and ultimate tensile strength (UTS). In this investigation, these tensile tests were carried out at different strain rate: 1, 20, 50 and 70%/sec. RESULTS: As regards the zonal properties, it was found that tensile stiffness was greater in the superficial layer than in deep layer. However, a few specimens from the deep layer displayed similar or greater stiffness compared to the superficial layer. With respect to the directional properties, the specimens oriented parallel to the predominant alignment of collagen, were stiffer than those, which were perpendicular to it in each layer. However, only the results regarding the deep layer can be considered statistically significant. In regard to the variation of modulus with the strain-rate, the results showed that there is no significant increase of the modulus with increasing strain rate from 20 to 50% per second. However, at 70% per second, articular cartilage stiffness considerably increased by up to one order of magnitude greater than that determined at lower strain rates in both the superficial and deep layer. Moreover, the UTS of cartilage specimens tested at 70% per second showed a significant rise, reaching values of four to five times that of those measured at 1, 20 or 50% per second. CONCLUSION: The steep increases in both the stiffness and ultimate tensile strength of cartilage at high strain rates point to the existence in cartilage of a mechanism for its protection from damage by stresses arising in trauma, which are usually applied at high rates. This mechanism needs to be elucidated. The reduced anisotropy found in the present study pointed out that collagen is likely to be less organized in bovine cartilage than in the human and therefore, a study of its ultra-structure would be appropriate.  相似文献   

18.
The growth, maintenance and ossification of cartilage are fundamental to skeletal development and are regulated throughout life by the mechanical cues that are imposed by physical activities. Finite element computer analyses have been used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and articular cartilage thickness distributions. Using single-phase continuum material representations of cartilage, the results have indicated that local intermittent hydrostatic pressure promotes cartilage maintenance. Cyclic tensile strains (or shear), however, promote cartilage growth and ossification. Because single-phase material models cannot capture fluid exudation in articular cartilage, poroelastic (or biphasic) solid/fluid models are often implemented to study joint mechanics. In the middle and deep layers of articular cartilage where poroelastic analyses predict little fluid exudation, the cartilage phenotype is maintained by cyclic fluid pressure (consistent with the single-phase theory). In superficial articular layers the chondrocytes are exposed to tangential tensile strain in addition to the high fluid pressure. Furthermore, there is fluid exudation and matrix consolidation, leading to cell 'flattening'. As a result, the superficial layer assumes an altered, more fibrous phenotype. These computer model predictions of cartilage mechanobiology are consistent with results of in vitro cell and tissue and molecular biology experiments.  相似文献   

19.
The immunohistochemical localization of type II and type I collagens was examined in the articular cartilage of the femoral head of growing rats injected systemically with 5 mg kg−1 dexamethasone for 2 weeks every other day. The intensities of immunostaining for type II collagen, measured by microphotometry, was highest in the flattened cell layer and high in the hypertrophic cell layer, moderate in the proliferative cell and transitional cell layers and low in the superficial layer. After dexamethasone administration, the intensities decreased markedly in the flattened cell layer and slightly in the hypertrophic cell layer, although the decreases in other layers were negligible. The staining intensities for type I collagen were highest in the flattened cell layer, low in the superficial and transitional cell layers and very low in the proliferative and hypertrophic cell layers. After dexamethasone administration, the intensities increased markedly in the flattened cell layer and slightly in the superficial and proliferative cell layers, but did not change in the transitional and hypertrophic cell layers. Thus, dexamethasone administration caused a decrease in type II collagen and an increase in type I collagen in the matrix of the surface portion of articular cartilage. The composition of isoforms of collagen in the matrix changed after the steroid administration. The results strongly suggest that the shift in collagen composition from type II to type I predominance is a cause of the degeneration of the articular cartilage after glucocorticoid administration. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

20.
Adult articular cartilage has depth-dependent mechanical and biochemical properties which contribute to zone-specific functions. The compressive moduli of immature cartilage and tissue-engineered cartilage are known to be lower than those of adult cartilage. The objective of this study was to determine if such tissues exhibit depth-dependent compressive properties, and how these depth-varying properties were correlated with cell and matrix composition of the tissue. The compressive moduli of fetal and newborn bovine articular cartilage increased with depth (p<0.05) by a factor of 4-5 from the top 0.1 mm (28+/-13 kPa, 141+/-10 kPa, respectively) to 1 mm deep into the tissue. Likewise, the glycosaminoglycan and collagen content increased with depth (both p<0.001), and correlated with the modulus (both p<0.01). In contrast, tissue-engineered cartilage formed by either layering or mixing cells from the superficial and middle zone of articular cartilage exhibited similarly soft regions at both construct surfaces, as exemplified by large equilibrium strains. The properties of immature cartilage may provide a template for developing tissue-engineered cartilage which aims to repair cartilage defects by recapitulating the natural development and growth processes. These results suggest that while depth-dependent properties may be important to engineer into cartilage constructs, issues other than cell heterogeneity must be addressed to generate such tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号