首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
以扬州地区生长的成年杉木为实验材料,通过采用数码相机拍摄、体视镜、扫描电镜以及半薄切片等方法,对杉木小孢子叶球发育、小孢子囊发育及其散粉规律进行详细观察。结果发现,10月中旬,杉木小孢子叶球形成并着生于新枝顶端。翌年3月中下旬,小孢子叶球成熟,进入散粉期,散粉首先从小孢子叶球基部开始依次向上部扩散。小孢子叶在孢子叶球主轴上螺旋排列,单个小孢子叶通常由3个小孢子囊组成,构成三角形。小孢子囊壁由1层表皮细胞、1~2层中间层细胞和1层绒毡层细胞组成,表皮细胞首先形成,并向内分化出2~3层细胞,分别分化形成中层和绒毡层,最后中层和绒毡层消失。杉木的小孢子囊通过开裂口控制其开裂,20℃室温下整个小孢子叶球散粉时间持续约18 h,单个小孢子叶的散粉时间为8~10 h。以上结果显示,杉木小孢子叶球的发育过程经历了体积增大、鳞片开张及散粉等阶段,这些形态和结构上的变化利于提高散粉效率,这说明杉木在长期的演化过程中,形成了许多有利于风媒传粉的结构特征。  相似文献   

2.
Two years of histological samples were collected from a Pinus monticola Dougl. (western white pine) tree identified as not producing mature pollen or seed cones. Anatomical information was collected to the ultrastructural level, to assess possible mechanisms for pollen and cone abortion resulting in sterility. Development of male and female gametophytes in the sterile western white pine tree was arrested after meiosis and before further cell divisions could take place. Sterile male gametophytes (pollen grains) had poorly developed pollen walls and sacci, reduced and degenerative cytoplasm, and no evidence of stored starch grains. The pollen cone aborted prior to pollen dehiscence. Meiosis of the megaspore mother cell in the ovule produced four megaspores, but development was stopped at the functional megaspore stage. The seed cone aborted in the first year of growth before winter dormancy. Tapetal tissue in sterile microsporangia appeared similar to that of fertile microsporangia, until the vacuolate, uninucleate microspore stage. Tapetal cells and thecal fluid surrounding the sterile microspores persisted well past the time when microsporangia on fertile trees started the process of maturation and desiccation. At pollen dehiscence, sterile pollen cones did not release any pollen and the microsporangia were filled with a sticky fluid. The behaviour of the tapetum in P. monticola sterile cones is compared with reports of tapetal function and malfunction reported in studies of angiosperm and other gymnosperm species. The occurrence and timing of gametophyte abortion in both cone sexes suggests a genetic rather than environmental basis for the sterility mechanism.  相似文献   

3.
Platycrater arguta Sieb. et Zucc. is a rare and endangered species endemic to East Asia. It produces two floral morphs viz. bisexual and male flowers. For bisexual flowers, simultaneous cytokinesis in the microsporocyte meiosis leads to a tetrahedral tetrad. The mature pollen grain is shed at 2-cell stage. The young anther wall is composed of epidermis, endothecium that develops fibrous thickenings at maturity, 1–2 middle layers and tapetum. The tapetum with uninucleate to binucleate cells, disintegrates in situ (glandular tapetum), yet in a small percentage of the anthers (about 37.6%), the tapetum does not disintegrate, causing complete male sterility. The ovules are anatropous, unitegmic, tenuinucellar and the formation of the embryo sac follows the monosporic, Polygonum type. Antipodal cells are lacking in the mature embryo sacs. Before fertilization, two polar nuclei fuse into a secondary nucleus. The formation of microsporangial wall, microsporogenesis and male gametogenesis in male flowers are analogous to those in the bisexual. Prezygotic embryological characters ofP. arguta were reported for the first time, revealing that its endangerment is correlated with the abortion of pollen of a part but not to the female development that is normal.  相似文献   

4.

Background and Aims

The Arabidopsis thaliana pollen cell wall is a complex structure consisting of an outer sporopollenin framework and lipid-rich coat, as well as an inner cellulosic wall. Although mutant analysis has been a useful tool to study pollen cell walls, the ultrastructure of the arabidopsis anther has proved to be challenging to preserve for electron microscopy.

Methods

In this work, high-pressure freezing/freeze substitution and transmission electron microscopy were used to examine the sequence of developmental events in the anther that lead to sporopollenin deposition to form the exine and the dramatic differentiation and death of the tapetum, which produces the pollen coat.

Key Results

Cryo-fixation revealed a new view of the interplay between sporophytic anther tissues and gametophytic microspores over the course of pollen development, especially with respect to the intact microspore/pollen wall and the continuous tapetum epithelium. These data reveal the ultrastructure of tapetosomes and elaioplasts, highly specialized tapetum organelles that accumulate pollen coat components. The tapetum and middle layer of the anther also remain intact into the tricellular pollen and late uninucleate microspore stages, respectively.

Conclusions

This high-quality structural information, interpreted in the context of recent functional studies, provides the groundwork for future mutant studies where tapetum and microspore ultrastructure is assessed.  相似文献   

5.
Anther structure and pollen ontogeny of six species of Hosta Tratt. was studied to provide additional data for its classification. Microscopic observation found that their male gametogenesis has the following structural characteristics: (1) the four microsporangia are linearly arranged on introrse side of anther connective tissue; (2) mature anther wall is composed of an epidermis, endothecium, middle layer(s), and tapetum; (3) microsporogenesis is successive; (4) mature pollen grains are three-celled at anthesis, with a vegetative cell filled with large amounts of starch grains; (5) pollen ontogeny is obviously asynchronous; (6) each tepal has about 9?C13 vascular traces in cross-section view. The above observations suggest that genus H. Tratt. should be classified as family Hostaceae, in agreement with Dahlgren and Clifford (1982), Takhtajan (1997), and Wu et?al. (2003).  相似文献   

6.
越南篦齿苏铁小孢子发生及其系统学意义   总被引:3,自引:0,他引:3  
运用常规石蜡切片方法,结合显微荧光技术对越南篦齿苏铁Cycas elongata 小孢子发生和花粉个体发育进行了研究。结果表明:其小孢子叶球5月中下旬开始萌动,小孢子囊着生在小孢子叶远轴面,且3-5小孢子囊以辐射状排列方式聚生成聚合囊。小孢子囊壁由6-7层细胞组成,包括表皮、中层及绒毡层。绒毡层来源于成熟造孢组织的外围细胞,其退化形式为分泌型。6月中旬,小孢子母细胞进入减数分裂I,至6月下旬形成四分体。母细胞减数分裂后胞质分裂的方式与其他苏铁类植物不同,具有连续型与同时型两种类型。7月中旬,小孢子经过2次有丝分裂后,形成3细胞的成熟花粉粒。7月下旬进入散粉状态。在花粉发育过程中,母细胞内淀粉粒的积累及其壁上胼胝质的沉积均呈现规律性变化。  相似文献   

7.

Background and Aims

Dioecism characterizes many crop species of economic value, including kiwifruit (Actinidia deliciosa). Kiwifruit male sterility occurs at the microspore stage. The cell walls of the microspores and the pollen of the male-sterile and male-fertile flowers, respectively, differ in glucose and galactose levels. In numerous plants, pollen formation involves normal functioning and degeneration timing of the tapetum, with calcium and carbohydrates provided by the tapetum essential for male fertility. The aim of this study was to determine whether the anther wall controls male fertility in kiwifruit, providing calcium and carbohydrates to the microspores.

Methods

The events occurring in the anther wall and microspores of male-fertile and male-sterile anthers were investigated by analyses of light microscopy, epifluorescence, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL assay) and transmission electron microscopy coupled with electron spectroscopy. The possibility that male sterility was related to anther tissue malfunctioning with regard to calcium/glucose/galactose provision to the microspores was also investigated by in vitro anther culture.

Key Results

Both tapetum and the middle layer showed secretory activity and both degenerated by programmed cell death (PCD), but PCD was later in male-sterile than in male-fertile anthers. Calcium accumulated in cell walls of the middle layer and tapetum and in the exine of microspores and pollen, reaching higher levels in anther wall tissues and dead microspores of male-sterile anthers. A specific supply of glucose and calcium induced normal pollen formation in in vitro-cultured anthers of the male-sterile genotype.

Conclusions

The results show that male sterility in kiwifruit is induced by anther wall tissues through prolonged secretory activity caused by a delay in PCD, in the middle layer in particular. In vitro culture results support the sporophytic control of male fertility in kiwifruit and open the way to applications to overcome dioecism and optimize kiwifruit production.  相似文献   

8.
Zamia furfuracea, a cycad of Mexican origin, in cultivation is pollinated by the snout weevil, Rhopalotria mollis, also of Mexican origin. This weevil apparently is host specific, swarming upon male cones of the cycad, where mating, feeding, and oviposition occur. Sporophylls of male cones are rich in starch; those of female cones are poor in starch, and weevils feed upon male cones and are visitors to but not feeders upon or within female cones. Pollen transport to female cones occurs during such visitation. All stages of metamorphosis of R. mollis occur within male cones; larvae feed exclusively on parenchyma of microsporophylls, pupate within stalks of microsporophylls, and emerge as adults from the outer ends of microsporophylls. They do not feed on pollen and do not damage microsporangia or pollen. Toward the end of the breeding season of the weevil (and the cycad), some larvae enter diapause in thick-walled pupal cases within microsporangial stalks of pollen-spent cones. These remain in diapause until the next reproductive season of the cycad.  相似文献   

9.
The Arabidopsis anther has a bilateral symmetry with four lobes, each consisting of four distinct layers of somatic cells from the outer to inner side: epidermis, endothecium, middle layer and tapetum. The tapetum is a layer of cells comprising the inner surface of the pollen wall. It plays an important role in anther development by providing enzymes, materials and nutrients required for pollen maturation. Genes and molecular mechanisms underlying tapetum formation and pollen wall biosynthesis have been studied in Arabidopsis. However, tapetum degeneration and anther dehiscence have not been well characterized at the molecular level. Here, we report that an Arabidopsis gene, designated reduced male fertility (RMF), regulates degeneration of tapetum and middle layer during anther development. The Arabidopsis dominant mutant rmf-1D overexpressing the RMF gene exhibited pleiotropic phenotypes, including dwarfed growth with small, dark-green leaves and low male fertility. Tapetum development and subsequent degeneration were impaired in the mutant. Accordingly, pollen maturation was disturbed, reducing the male fertility. In contrast, tapetum degeneration was somewhat accelerated in the RMF RNAi plants. The RMF gene was expressed predominantly in the anther, particularly in the pollen grains. Notably, the RMF protein contains an F-box motif and is localized to the nucleus. It physically interacts with the Arabidopsis-Skp1-like1 protein via the F-box motif. These observations indicate that the RMF gene encodes an F-box protein functioning in tapetum degeneration during anther development.  相似文献   

10.
用常规石蜡切片技术和压片法对大百合小孢子发生和雄配子体发育进行观察。结果表明:花药4室,花药壁由表皮、药室内壁、中层和腺质绒毡层组成,花药壁发育方式为单子叶型,药室内壁部分细胞发育后期发生纤维状加厚。小孢子母细胞减数分裂过程的胞质分裂为连续型,四分体多数为左右对称型,偶有四面体型。成熟花粉为2细胞型,具1个萌发沟。经TTC法检验,成熟花粉生活力为86.3%。从小孢子的发生及雄配子体发育的整个过程看,未见异常现象,能形成大量正常的成熟花粉。  相似文献   

11.
该研究采用光学显微镜和扫描电镜,观察罗汉松雄球花、小孢子及其配子体发育过程的形态结构特征,以揭示罗汉松小孢子的发生和雄配子体的发育规律,为罗汉松的生殖和杂交组合提供胚胎学证据。结果发现:(1)罗汉松花芽于每年的7月开始分化,至次年5月花粉成熟散粉,雄球花由单生的卵圆形转为2~3个葇荑花序并生,小孢子叶螺旋状着生于圆柱状的花序轴上,每一小孢子叶远轴面基部并列着生2个小孢子囊。(2)小孢子囊壁发育过程中由外及里出现各由1层薄壁细胞组成的表皮、药室内壁、中层和绒毡层,至散粉前,后两者基本被分解吸收。(3)同一小孢子囊内的造孢细胞发育在时间上存在差异,小孢子母细胞减数分裂后形成的四分体有四面体型和十字交叉型两种排列方式,成熟的雄配子体包括生殖细胞和粉管细胞,发育过程中出现的第一和第二原叶细胞大部分被分解消失。(4)电镜下罗汉松花粉粒为典型的松花型花粉,两侧各具1个气囊,远极面具一萌发沟,花粉粒表面具纹理或皱褶。  相似文献   

12.
The tapetum is a layer of cells covering the inner surface of pollen sac wall. It contributes to anther development by providing enzymes and materials for pollen coat biosynthesis and nutrients for pollen development. At the end of anther development, the tapetum is degenerated, and the anther is dehisced, releasing mature pollen grains. In Arabidopsis, several genes are known to regulate tapetum formation and pollen development. However, little is known about how tapetum degeneration and anther dehiscence are regulated. Here, we show that an activation-tagged mutant of the S HI-R ELATED S EQUENCE 7 (SRS7) gene exhibits disrupted anther dehiscence and abnormal floral organ development in addition to its dwarfed growth with small, curled leaves. In the mutant hypocotyls, cell elongation was reduced, and gibberellic acid sensitivity was diminished. Whereas anther development was normal, its dehiscence was suppressed in the dominant srs7-1D mutant. In wild-type anthers, the tapetum disappeared at anther development stages 11 and 12. In contrast, tapetum degeneration was not completed at these stages, and anther dehiscence was inhibited, causing male sterility in the mutant. The SRS7 gene was expressed mainly in the filaments of flowers, where the DEFECTIVE-IN-ANTHER-DEHISCENCE 1 (DAD1) enzyme catalyzing jasmonic acid (JA) biosynthesis is accumulated immediately before flower opening. The DAD1 gene was induced in the srs7-1D floral buds. In fully open flowers, the SRS7 gene was also expressed in pollen grains. It is therefore possible that the abnormal anther dehiscence and floral development of the srs7-1D mutant would be related with JA.  相似文献   

13.
鹅毛竹大小孢子及雌雄配子体发育   总被引:1,自引:0,他引:1  
利用扫描电镜、透射电镜、石蜡切片,对鹅毛竹的花芽分化、大、小孢子及雌、雄配子体的发育进行了详细观察.结果发现:鹅毛竹花药具4个药室,花药壁由表皮、药室内壁、中层、绒毡层4层结构组成,花药壁发育为单子叶型,绒毡层为腺质型,小孢子母细胞减数分裂中的胞质分裂为连续型,产生左右对称型小孢子.鹅毛竹成熟花粉大多2细胞型,都具1个萌发孔.鹅毛竹子房为单子房,子房1室,侧膜胎座,一个倒生胚珠,双珠被,薄珠心.大孢子母细胞由一个雌性孢原细胞直接发育而成,大孢子四分体呈线型,合点端一个大孢子分化为功能大孢子,由功能大孢子经过3次有丝分裂形成8核胚囊,发育类型为蓼型,位于核点端的3个细胞核进行多次分裂形成多个反足细胞.至此,成熟胚囊形成.并就鹅毛竹不结实的原因进行了探讨.  相似文献   

14.
 Fossil vegetative and reproductive structures from deposits of the Raritan Formation in New Jersey (Turonian, Upper Cretaceous, ∼90 MYBP) include ferns, gymnosperms, and angiosperms. Gymnosperms collected from this formation have been known since the beginning of the 20th century. Fossil leaves, wood and seed cones have been are identified as belonging to the Cupressaceae, Pinaceae, and Taxodiaceae. In the present contribution, we describe a series of fossil dwarf shoots, leaves and a pollen cone belonging to the family Pinaceae. Fossils are charcoalified with preserved three-dimensional structure and excellent cellular detail. The dwarf shoots are assigned to a new species Prepinus crossmanensis sp. nov. and to the previously described Pinus quinquefolia Jeffrey. The new species Prepinus crossmanensis differs in size, shape, presence of hypodermis, sclerenchyma and stomata in the cataphylls, and number and shape of needle leaves from previously known species. Also, isolated leaves were found that were assigned to the new species, Prepinus raritanensis sp. nov. The new species is differentiated by the size and shape of stomata, the presence of number of layers of the hypodermis; and the cell-shape and number of layers of the mesophyll and transfusion tissue. A previously undescribed male cone, Amboystrobus cretacicum gen. and sp. nov., has an axis with spirally attached microsporophylls, each bearing two abaxial ovoid microsporangia. The pollen grains are monosulcate and bisaccate (eusaccate), with an elliptical corpus, granulate exine sculpture, and honeycomb-like wall structure. Received March 21, 2000 Accepted November 13, 2000  相似文献   

15.
In this article, we studied the pollen morphology and wall development, microsporogenesis, male gametophyte development, and anther wall structure changes during pollen development of Cardiocrinum giganteum (Wall.) Makina from the genus Cardiocrinum (Endl.) Lindl. (Liliaceae) using paraffin sections, scanning and transmission electron microscopy, and fluorescence microscopy. The results showed that C. giganteum has oval-shaped pollen with a single sulcus and reticulate ornamentation. The exine is of the semi-tectum type and can be divided into the tectum layer, columellate layer and basal layer. Meiosis in the microsporocyte is accompanied by successive cytokinesis. The mature pollen is three-celled. The anther wall prior to maturity is built by one layer of epidermis, 1–2 layers of endothecium cells, 4–5 middle layers and 2 layers of tapetum, while upon maturity it is only built by one layer of epidermis, one layer of endothecium cells and one middle layer. The tapetal cells are secretory, with two or more nuclei. Ubisch bodies originate from rough endoplasmic reticulum except a few from mitochondria.  相似文献   

16.
In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.  相似文献   

17.
竹类植物因有着较长的开花周期,其生殖生物学研究的报道相对较少。该研究采用石蜡切片与野外观察的方法,对毛竹花药的发育以及花药发育与花序的关系进行了研究。结果表明:毛竹的花药壁结构包括4层细胞:表皮细胞、药室内壁细胞、中层细胞和绒毡层细胞。药室内壁和中层都只有一层细胞,而且细胞形状较扁,花药发育后期药室内壁会逐渐降解,而中层则会完全解体消失。花药壁的发育为单子叶型,绒毡层为腺质型,而且只有一层,细胞径向较长,最后也会消失。小孢子母细胞减数分裂时,胞质分裂方式为连续型。形成的小孢子经一次有丝分裂后逐渐形成成熟花粉粒,大多为二细胞型,很少产生三细胞型。此外,还发现毛竹花药的发育与花序形态变化存在着相对应的关系。野外连续观察和切片发现,随着花序形态的不断发育变化,首先花药开始形成并不断分化,药壁备层也逐渐形成;接着小孢子逐渐成熟,备层也慢慢随之解体、消失;最后花药逐渐开裂并开始散粉。该研究结果不仅丰富了毛竹和竹类生殖生物学的研究内容,而且对毛竹种质的研究也具有重要意义。  相似文献   

18.
Brachypodium distachyon has emerged as a model plant for the improvement of grain crops such as wheat, barley and oats and for understanding basic biological processes to facilitate the development of grasses as superior energy crops. Brachypodium is also the first species of the grass subfamily Pooideae with a sequenced genome. For obtaining a better understanding of the mechanisms controlling male gametophyte development in B. distachyon, here we report the cellular changes during the stages of anther development, with special reference to the development of the anther wall. Brachypodium anthers are tetrasporangiate and follow the typical monocotyledonous-type anther wall formation pattern. Anther differentiation starts with the appearance of archesporial cells, which divide to generate primary parietal and primary sporogenous cells. The primary parietal cells form two secondary parietal layers. Later, the outer secondary parietal layer directly develops into the endothecium and the inner secondary parietal layer forms an outer middle layer and inner tapetum by periclinal division. The anther wall comprises an epidermis, endothecium, middle layer and the secretory-type tapetum. Major documented events of anther development include the degradation of a secretory-type tapetum and middle layer during the course of development and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The tapetum undergoes degeneration at the tetrad stage and disintegrates completely at the bicellular stage of pollen development. The distribution of insoluble polysaccharides in the anther layers and connective tissue through progressive developmental stages suggests their role in the development of male gametophytes. Until sporogenous cell stage, the amount of insoluble polysaccharides in the anther wall was negligible. However, abundant levels of insoluble polysaccharides were observed during microspore mother cell and tetrad stages and gradually declined during the free microspore and vacuolated microspore stages to undetectable level at the mature stage. Thus, the cellular features in the development of anthers in B. distachyon share similarities with anther and pollen development of other members of Poaceae.  相似文献   

19.
用光镜和电镜观察羽叶薰衣草(Lavandula pinnata L.)雄性不育小孢子发育过程的细胞形态学特征.结果表明:羽叶薰衣草花药4枚,每枚花药通常具4个小孢子囊.花药壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此之前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四面体及十字交叉型.小孢子的发育过程可分为造孢细胞期、减数分裂时期、小孢子发育早期、小孢子发育晚期.未观察到二胞花粉期和成熟花粉期.羽叶薰衣草花粉败育主要发生在单核花粉时期,细胞内物质解体并逐渐消失变成空壳花粉或花粉皱缩变形成为各种畸形的败育花粉.在此 前小孢子的发育正常.羽叶薰衣草小孢子不育机制体现在绒毡层过早解体、四分体时期以后各细胞中线粒体结构不正常、胼胝质壁与小孢子母细胞脱离、花药壁细胞中淀粉出现时间异常等. 壁发育为双子叶型,从外向内分为表皮、药室内壁、中层和绒毡层4层细胞.减数分裂形成的四分体为四  相似文献   

20.
Microsporogenesis and development of the male gametophyte of Allium senescens L. were studied by use of paraffin sections. The anther was found to be four-sporangia. Its wall includes four layers: epidermis, endothecium, middle layer, and secretory tapetum. Cytokinesis during meiosis of microspore mother cells (MMCs) is successive. Most mature pollen grains are two-celled, a few are three-celled. In addition, anomalies were observed during meiosis of MMC and in uninucleate microspores, including laggard chromosomes, lagging chromosomes, anaphase bridges, and micronucleus. These anomalies are possible reasons for abortive pollen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号