首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《朊病毒》2013,7(4):354-358
The cellular form of prion protein (PrPc) is a highly conserved cell surface GPI-anchored glycoprotein that was identified in cholesterol-enriched, detergent-resistant microdomains, named “rafts.” The association with these specialized portions of the cell plasma membrane is required for conversion of PrPc to the transmissible spongiform encephalopathy-associated protease-resistant isoform. Usually, PrPc is reported to be a plasma membrane protein, however several studies have revealed PrPc as an interacting protein mainly with the membrane/organelles, as well as with cytoskeleton network. Recent lines of evidence indicated its association with ER lipid raft-like microdomains for a correct folding of PrPc, as well as for the export of the protein to the Golgi and proper glycosylation. During cell apoptosis, PrPc can undergo intracellular re-localization, via ER-mitochondria associated membranes (MAM) and microtubular network, to mitochondrial raft-like microdomains, where it induced the loss of mitochondrial membrane potential and citochrome c release, after a contained raise of calcium concentration. We suggest that PrPc may play a role in the multimolecular signaling complex associated with cell apoptosis

Lipid rafts and their components may, thus, be investigated as pharmacological targets of interest, introducing a novel and innovative task in modern pharmacology, i.e., the development of glycosphingolipid targeted drugs.  相似文献   

2.
In this report we demonstrated that cellular prion protein is strictly associated with gangliosides in microdomains of neural and lymphocytic cells. We preliminarily investigated the protein distribution on the plasma membrane of human neuroblastoma cells, revealing the presence of large clusters. In order to evaluate its possible role in tyrosine signaling pathway triggered by GEM, we analyzed PrPc presence in microdomains and its association with gangliosides, using cholera toxin as a marker of GEM in neuroblastoma cells and anti-GM3 MoAb for identification of GEM in lymphoblastoid cells. In neuroblastoma cells scanning confocal microscopical analysis revealed a consistent colocalization between PrPc and GM1 despite an uneven distribution of both on the cell surface, indicating the existence of PrPc-enriched microdomains. In lymphoblastoid T cells PrPc molecules were mainly, but not exclusively, colocalized with GM3. In addition, PrPc was present in the Triton-insoluble fractions, corresponding to GEM of cell plasma membrane. Additional evidence for a specific PrPc-GM3 interaction in these cells was derived from the results of TLC analysis, showing that prion protein was associated with GM3 in PrPc immunoprecipitates. The physical association of PrPc with ganglioside GM3 within microdomains of lymphocytic cells strongly suggests a role for PrPc-GM3 complex as a structural component of the multimolecular signaling complex involved in T cell activation and other dynamic lymphocytic plasma membrane functions.  相似文献   

3.
Several investigations have been carried out since many years in order to precisely address the function of lipid rafts in cell life and death. On the basis of the biochemical nature of lipid rafts, composed by sphingolipids, including gangliosides, sphingomyelin, cholesterol and signaling proteins, a plethora of possible interactions with various subcellular structures has been suggested. Their structural and functional role at the plasma membrane as well as in cell organelles such as endoplasmic reticulum and Golgi apparatus has been analyzed in detail in several studies. In particular, a specific activity of lipid rafts has been hypothesized to contribute to cell death by apoptosis. Although detected in various cell types, the role of lipid rafts in apoptosis has however been mostly studied in lymphocytes where the physiological apoptotic program occurs after CD95/Fas triggering. In this review, the possible contribution of lipid rafts to the cascade of events leading to T cell apoptosis after CD95/Fas ligation are summarized. Particular attention has been given to the mitochondrial raft-like microdomains, which may represent preferential sites where some key reactions can take place and can be catalyzed, leading to either survival or death of T cells.  相似文献   

4.
The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.  相似文献   

5.
Plasma membrane lipid rafts have been considered as a sort of "chamber", where several subcellular activities, including CD95/Fas-mediated pro-apoptotic signaling, can take place. Recently, we demonstrated that, after CD95/Fas triggering, raft-like microdomains could be detected in mitochondrial membranes. The mitochondrion appears as a dynamic and subcompartmentalized organelle in which microdomains might act as controllers of apoptosis-associated fission that results in the release of apoptogenic factors. Here, we hypothesize that some "small" mitochondria, possibly derived from their fission process, can reach the nuclear envelope and strictly interact with this. Mitochondria could act as a signaling "device" contributing to molecular trafficking of molecules, including raft-like components, during apoptosis.  相似文献   

6.
In prion diseases, the cellular form of the prion protein, PrPC, undergoes a conformational conversion to the infectious isoform, PrPSc. PrPC associates with lipid rafts through its glycosyl-phosphatidylinositol (GPI) anchor and a region in its N-terminal domain which also binds to heparan sulfate proteoglycans (HSPGs). We show that heparin displaces PrPC from rafts and promotes its endocytosis, suggesting that heparin competes with an endogenous raft-resident HSPG for binding to PrPC. We then utilised a transmembrane-anchored form of PrP (PrP-TM), which is targeted to rafts solely by its N-terminal domain, to show that both heparin and phosphatidylinositol-specific phospholipase C can inhibit its association with detergent-resistant rafts, implying that a GPI-anchored HSPG targets PrPC to rafts. Depletion of the major neuronal GPI-anchored HSPG, glypican-1, significantly reduced the raft association of PrP-TM and displaced PrPC from rafts, promoting its endocytosis. Glypican-1 and PrPC colocalised on the cell surface and both PrPC and PrPSc co-immunoprecipitated with glypican-1. Critically, treatment of scrapie-infected N2a cells with glypican-1 siRNA significantly reduced PrPSc formation. In contrast, depletion of glypican-1 did not alter the inhibitory effect of PrPC on the β-secretase cleavage of the Alzheimer''s amyloid precursor protein. These data indicate that glypican-1 is a novel cellular cofactor for prion conversion and we propose that it acts as a scaffold facilitating the interaction of PrPC and PrPSc in lipid rafts.  相似文献   

7.
The dynamic segregation of membrane components within microdomains, such as the sterol-enriched and sphingolipid-enriched membrane rafts, emerges as a central regulatory mechanism governing physiological responses in various organisms. Over the past five years, plasma membrane located raft-like domains have been described in several plant species. The protein and lipid compositions of detergent-insoluble membranes, supposed to contain these domains, have been extensively characterised. Imaging methods have shown that lateral segregation of lipids and proteins exists at the nanoscale level at the plant plasma membrane, correlating detergent insolubility and membrane-domain localisation of presumptive raft proteins. Finally, the dynamic association of specific proteins with detergent-insoluble membranes upon environmental stress has been reported, confirming a possible role for plant rafts as signal transduction platforms, particularly during biotic interactions.  相似文献   

8.
Annexin A2 (AnxA2), a Ca(2+)-dependent phospholipid-binding protein, is known to associate with the plasma membrane and the endosomal system. Within the plasma membrane, AnxA2 associates in a Ca(2+) dependent manner with cholesterol-rich lipid raft microdomains. Here, we show that the association of AnxA2 with the lipid rafts is influenced not only by intracellular levels of Ca(2+) but also by N-terminal phosphorylation at tyrosine 23. Binding of AnxA2 to the lipid rafts is followed by the transport along the endocytic pathway to be associated with the intralumenal vesicles of the multivesicular endosomes. AnxA2-containing multivesicular endosomes fuse directly with the plasma membrane resulting in the release of the intralumenal vesicles into the extracellular environment, which facilitates the exogenous transfer of AnxA2 from one cell to another. Treatment with Ca(2+) ionophore triggers the association of AnxA2 with the specialized microdomains in the exosomal membrane that possess raft-like characteristics. Phosphorylation at Tyr-23 is also important for the localization of AnxA2 to the exosomal membranes. These results suggest that AnxA2 is trafficked from the plasma membrane rafts and is selectively incorporated into the lumenal membranes of the endosomes to escape the endosomal degradation pathway. The Ca(2+)-dependent exosomal transport constitutes a novel pathway of extracellular transport of AnxA2.  相似文献   

9.
A hallmark of prion diseases is the conversion of the host-encoded prion protein (PrPC where C is cellular) into an alternatively folded, disease-related isoform (PrPSc, where Sc is scrapie), the accumulation of which is associated with synapse degeneration and ultimately neuronal death. The formation of PrPSc is dependent upon the presence of PrPC in specific, cholesterol-sensitive membrane microdomains, commonly called lipid rafts. PrPC is targeted to these lipid rafts because it is attached to membranes via a glycosylphosphatidylinositol anchor. Here, we show that treatment of prion-infected neuronal cell lines (ScN2a, ScGT1, or SMB cells) with synthetic glycosylphosphatidylinositol analogues, glucosamine-phosphatidylinositol (glucosamine-PI) or glucosamine 2-O-methyl inositol octadecyl phosphate, reduced the PrPSc content of these cells in a dose-dependent manner. In addition, ScGT1 cells treated with glucosamine-PI did not transmit infection following intracerebral injection to mice. Treatment with glucosamine-PI increased the cholesterol content of ScGT1 cell membranes and reduced activation of cytoplasmic phospholipase A2 (PLA2), consistent with the hypothesis that the composition of cell membranes affects key PLA2-dependent signaling pathways involved in PrPSc formation. The effect of glucosamine-PI on PrPSc formation was also reversed by the addition of platelet-activating factor. Glucosamine-PI caused the displacement of PrPC from lipid rafts and reduced expression of PrPC at the cell surface, putative sites for PrPSc formation. We propose that treatment with glucosamine-PI modifies local micro-environments that control PrPC expression and activation of PLA2 and subsequently inhibits PrPSc formation.  相似文献   

10.
The Gag polyprotein of human immunodeficiency virus type 1 (HIV-1) organizes the assembly of nascent virions at the plasma membrane of infected cells. Here we demonstrate that a population of Gag is present in distinct raft-like membrane microdomains that we have termed "barges." Barges have a higher density than standard rafts, most likely due to the presence of oligomeric Gag-Gag assembly complexes. The regions of the Gag protein responsible for barge targeting were mapped by examining the flotation behavior of wild-type and mutant proteins on Optiprep density gradients. N-myristoylation of Gag was necessary for association with barges. Removal of the NC and p6 domains shifted much of the Gag from barges into typical raft fractions. These data are consistent with a model in which multimerization of myristoylated Gag proteins drives association of Gag oligomers into raft-like barges. The functional significance of barge association was revealed by several lines of evidence. First, Gag isolated from virus-like particles was almost entirely localized in barges. Moreover, a comparison of wild-type Gag with Fyn(10)Gag, a chimeric protein containing the N-terminal sequence of Fyn, revealed that Fyn(10)Gag exhibited increased affinity for barges and a two- to fourfold increase in particle production. These results imply that association of Gag with raft-like barge membrane microdomains plays an important role in the HIV-1 assembly process.  相似文献   

11.

Background

It has been reported that cellular prion protein (PrPc) co-localizes with caveolin-1 and participates to signal transduction events by recruiting Fyn kinase. As PrPc is a secreted protein anchored to the outer surface membrane through a glycosylphosphatidylinositol (GPI) anchor (secPrP) and caveolin-1 is located in the inner leaflet of plasma membrane, there is a problem of how the two proteins can physically interact each other and transduce signals.

Results

By using the GST-fusion proteins system we observed that PrPc strongly interacts with caveolin-1 scaffolding domain and with a caveolin-1 hydrophilic C-terminal region, but not with the caveolin-1 N-terminal region. In vitro binding experiments were also performed to define the site(s) of PrPc interacting with cav-1. The results are consistent with a participation of PrPc octapeptide repeats motif in the binding to caveolin-1 scaffolding domain. The caveolar localization of PrPc was ascertained by co-immunoprecipitation, by co-localization after flotation in density gradients and by confocal microscopy analysis of PrPc and caveolin-1 distributions in a neuronal cell line (GN11) expressing caveolin-1 at high levels.

Conclusions

We observed that, after antibody-mediated cross-linking or copper treatment, PrPc was internalized probably into caveolae. We propose that following translocation from rafts to caveolae or caveolae-like domains, secPrP could interact with caveolin-1 and induce signal transduction events.
  相似文献   

12.
In this paper, we have investigated the effects of the pore-forming toxin aerolysin, produced by Aeromonas hydrophila, on mammalian cells. Our data indicate that the protoxin binds to an 80-kD glycosyl-phosphatidylinositol (GPI)-anchored protein on BHK cells, and that the bound toxin is associated with specialized plasma membrane domains, described as detergent-insoluble microdomains, or cholesterol-glycolipid “rafts.” We show that the protoxin is then processed to its mature form by host cell proteases. We propose that the preferential association of the toxin with rafts, through binding to GPI-anchored proteins, is likely to increase the local toxin concentration and thereby promote oligomerization, a step that it is a prerequisite for channel formation. We show that channel formation does not lead to disruption of the plasma membrane but to the selective permeabilization to small ions such as potassium, which causes plasma membrane depolarization. Next we studied the consequences of channel formation on the organization and dynamics of intracellular membranes. Strikingly, we found that the toxin causes dramatic vacuolation of the ER, but does not affect other intracellular compartments. Concomitantly we find that the COPI coat is released from biosynthetic membranes and that biosynthetic transport of newly synthesized transmembrane G protein of vesicular stomatitis virus is inhibited. Our data indicate that binding of proaerolysin to GPI-anchored proteins and processing of the toxin lead to oligomerization and channel formation in the plasma membrane, which in turn causes selective disorganization of early biosynthetic membrane dynamics.  相似文献   

13.
Mitochondrial malfunction is a universal and critical step in the pathogenesis of many neurodegenerative diseases including prion diseases. Dynamin‐like protein 1 (DLP1) is one of the key regulators of mitochondrial fission. In this study, we investigated the role of DLP1 in mitochondrial fragmentation and dysfunction in neurons using in vitro and in vivo prion disease models. Mitochondria became fragmented and redistributed from axons to soma, correlated with increased mitochondrial DLP1 expression in murine primary neurons (N2a cells) treated with the prion peptide PrP106–126 in vitro as well as in prion strain‐infected hamster brain in vivo. Suppression of DLP1 expression by DPL1 RNAi inhibited prion‐induced mitochondrial fragmentation and dysfunction (measured by ADP/ATP ratio, mitochondrial membrane potential, and mitochondrial integrity). We also demonstrated that DLP1 RNAi is neuroprotective against prion peptide in N2a cells as shown by improved cell viability and decreased apoptosis markers, caspase 3 induced by PrP106–126. On the contrary, overexpression of DLP1 exacerbated mitochondrial dysfunction and cell death. Moreover, inhibition of DLP1 expression ameliorated PrP106–126‐induced neurite loss and synaptic abnormalities (i.e., loss of dendritic spine and PSD‐95, a postsynaptic scaffolding protein as a marker of synaptic plasticity) in primary neurons, suggesting that altered DLP1 expression and mitochondrial fragmentation are upstream events that mediate PrP106–126‐induced neuron loss and degeneration. Our findings suggest that DLP1‐dependent mitochondrial fragmentation and redistribution plays a pivotal role in PrPSc‐associated mitochondria dysfunction and neuron apoptosis. Inhibition of DLP1 may be a novel and effective strategy in the prevention and treatment of prion diseases.  相似文献   

14.

Background

Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrPsc) of the natural cellular prion protein (PrPc) encoded by the Prnp gene. Although several roles have been attributed to PrPc, its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrPc studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation.

Methodology/Principal Findings

Here we explore the role of PrPc expression in neurotransmission and neural excitability using wild-type, Prnp −/− and PrPc-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp −/− mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina™ microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp −/− and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABAA and AMPA-kainate receptors are co-regulated in both Prnp −/− and Tg20 mice.

Conclusions/Significance

Present results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABAA and AMPA-Kainate neurotransmission. New PrPc functions have recently been described, which point to PrPc as a target for putative therapies in Alzheimer''s disease. However, our results indicate that a “gain of function” strategy in Alzheimer''s disease, or a “loss of function” in prionopathies, may impair PrPc function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.  相似文献   

15.
The prion diseases occur following the conversion of the cellular prion protein (PrPC) into disease-related isoforms (PrPSc). In this study, the role of the glycosylphosphatidylinositol (GPI) anchor attached to PrPC in prion formation was examined using a cell painting technique. PrPSc formation in two prion-infected neuronal cell lines (ScGT1 and ScN2a cells) and in scrapie-infected primary cortical neurons was increased following the introduction of PrPC. In contrast, PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc. Furthermore, the presence of desialylated PrPC inhibited the production of PrPSc within prion-infected cortical neurons and ScGT1 and ScN2a cells. The membrane rafts surrounding desialylated PrPC contained greater amounts of sialylated gangliosides and cholesterol than membrane rafts surrounding PrPC. Desialylated PrPC was less sensitive to cholesterol depletion than PrPC and was not released from cells by treatment with glimepiride. The presence of desialylated PrPC in neurons caused the dissociation of cytoplasmic phospholipase A2 from PrP-containing membrane rafts and reduced the activation of cytoplasmic phospholipase A2. These findings show that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation. These results suggest that pharmacological modification of GPI glycosylation might constitute a novel therapeutic approach to prion diseases.  相似文献   

16.

Background

The cellular prion protein (PrPC) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrPSc). Although endocytosis appears to be required for this conversion, the mechanism of PrPC internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved.

Methodology/Principal Findings

We have investigated the mechanism of PrPC endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrPC internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrPC endocytosis. PrPC internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrPC co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrPC can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization.

Conclusions/Significance

These findings are of particular interest if we consider that the internalization route/s undertaken by PrPC can be crucial for the ability of different prion strains to infect and to replicate in different cell lines.  相似文献   

17.
Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.  相似文献   

18.
Ca2+ may trigger apoptosis in β-cells. Hence, the control of intracellular Ca2+ may represent a potential approach to prevent β-cell apoptosis in diabetes. Our objective was to investigate the effect and mechanism of action of plasma membrane Ca2+-ATPase (PMCA) overexpression on Ca2+-regulated apoptosis in clonal β-cells. Clonal β-cells (BRIN-BD11) were examined for the effect of PMCA overexpression on cytosolic and mitochondrial [Ca2+] using a combination of aequorins with different Ca2+ affinities and on the ER and mitochondrial pathways of apoptosis. β-cell stimulation generated microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. Overexpression of PMCA decreased [Ca2+] in the cytosol, the ER, and the mitochondria and activated the IRE1α-XBP1s but inhibited the PRKR-like ER kinase-eIF2α and the ATF6-BiP pathways of the ER-unfolded protein response. Increased Bax/Bcl-2 expression ratio was observed in PMCA overexpressing β-cells. This was followed by Bax translocation to the mitochondria with subsequent cytochrome c release, opening of the permeability transition pore, and apoptosis. In conclusion, clonal β-cell stimulation generates microdomains of high [Ca2+] in the cytosol and subcellular heterogeneities in [Ca2+] among mitochondria. PMCA overexpression depletes intracellular [Ca2+] stores and, despite a decrease in mitochondrial [Ca2+], induces apoptosis through the mitochondrial pathway. These data open the way to new strategies to control cellular Ca2+ homeostasis that could decrease β-cell apoptosis in diabetes.  相似文献   

19.
Fas triggers apoptosis via the caspase cascade when bound to its ligand FasL. In type I cells, Fas is concentrated into the plasma membrane lipid rafts, and these domains are required for the apoptotic signal to occur. In contrast, Fas is excluded from the microdomains in type II cells. We report that the coligation with Fas of the membrane receptor CD28 strongly increases Fas-induced apoptosis in type II T lymphocytes, whereas it has no effect in a type I cell line. The effect of CD28 is independent of its intracellular region and requires the recruitment of the microdomains. Indeed, upon CD28 costimulation, Fas is redistributed in the lipid rafts, and their disruption with a cholesterol chelator abrogates the effect of CD28. The microdomain-mediated cell death amplification does not alter death-induced signaling complex formation and is mediated by the enhancement of the mitochondrial apoptotic pathway. These findings indicate that the sensitivity to Fas-induced apoptosis of type II cells can be amplified in vivo by the recruitment of lipid rafts following interactions between nonapoptotic ligand/receptor pairs during cell-to-cell contacts.  相似文献   

20.
There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrPC). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrPC containing a GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrPC was associated with greater concentrations of gangliosides and cholesterol than PrPC. In addition, the targeting of desialylated PrPC to lipid rafts showed greater resistance to cholesterol depletion than PrPC. The presence of desialylated PrPC caused the dissociation of cytoplasmic phospholipase A2 (cPLA2) from PrP-containing lipid rafts, reduced the activation of cPLA2 and inhibited PrPSc production. We conclude that the sialic acid moiety of the GPI attached to PrPC modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrPSc formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号