首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viruses frequently co-opt host cell pathways to enhance their propagation or to enable latent infection. Certain receptors expressed by hematopoietic cells have immunoreceptor tyrosine-based activation motifs (ITAMs) in their cytoplasmic domains that initiate cellular activation, proliferation and differentiation. Some viruses have evolved, or acquired from their host, genes that encode ITAM-bearing proteins. These ITAM-bearing viral proteins have been implicated in cellular transformation in virus-infected hematopoietic cells, typically B cells, but also in non-hematopoietic tissues--including endothelial and epithelial cells.  相似文献   

2.
Surface Ig (sIg) expression is a critical checkpoint during avian B cell development. Only cells that express sIg colonize bursal follicles, clonally expand, and undergo Ig diversification by gene conversion. Expression of a heterodimer, in which the extracellular and transmembrane domains of murine CD8alpha or CD8beta are fused to the cytoplasmic domains of chicken Igalpha (chIgalpha) or Igbeta, respectively (murine CD8alpha (mCD8alpha):chIgalpha + mCD8beta:chIgbeta), or an mCD8alpha:chIgalpha homodimer supported bursal B cell development as efficiently as endogenous sIg. In this study we demonstrate that B cell development, in the absence of chIgbeta, requires both the Igalpha ITAM and a conserved non-ITAM Igalpha tyrosine (Y3) that has been associated with binding to B cell linker protein (BLNK). When associated with the cytoplasmic domain of Igbeta, the Igalpha ITAM is not required for the induction of strong calcium mobilization or BLNK phosphorylation, but is still necessary to support B cell development. In contrast, mutation of the Igalpha Y3 severely compromised calcium mobilization when expressed as either a homodimer or a heterodimer with the cytoplasmic domain of Igbeta. However, coexpression of the cytoplasmic domain of Igbeta partially complemented the Igalpha Y3 mutation, rescuing higher levels of BLNK phosphorylation and, more strikingly, supporting B cell development.  相似文献   

3.
4.
The TCR complex signals through a set of 10 intracytoplasmic motifs, termed immunoreceptor tyrosine-based activation motifs (ITAMs), contained within the gamma-, delta-, epsilon-, and zeta-chains. The need for this number of ITAMs is uncertain. Limited and contradictory studies have examined the ability of subsets of the TCR's ITAMs to signal into postthymic primary T lymphocytes. To study signaling by a restricted set of ITAMs, we expressed in transgenic mice a chimeric construct containing the IAs class II MHC extracellular and transmembrane domains linked to the cytoplasmic domain of the TCR zeta-chain. Tyrosine phosphorylation and receptor cocapping studies indicate that this chimeric receptor signals T cells independently of the remainder of the TCR. We show that CD4+ and CD8+ primary T cells, as well as naive and memory T cells, are fully responsive to stimulation through the IAs-zeta receptor. Further, IAs-zeta stimulation can induce primary T cell differentiation into CTL, Th1, and Th2 type cells. These results show that the zeta-chain ITAMs, in the absence of the gamma, delta, and epsilon ITAMs, are sufficient for the activation and functional maturation of primary T lymphocytes. It also supports the isolated use of the zeta-chain ITAMs in the development of surrogate TCRs for therapeutic purposes.  相似文献   

5.
The high affinity IgE Fc receptor (FcepsilonRI) beta chain functions as a signal amplifier and has been linked to atopy, asthma, and allergy. Herein, we report on a previously unrecognized negative regulatory role for the nonconventional beta chain immunoreceptor tyrosine-based activation motif that contains three tyrosine residues (YX5YX3Y). Degranulation and leukotriene production was found to be impaired in cells expressing the mutated FcepsilonRIbeta immunoreceptor tyrosine-based activation motifs FYY, YYF, FYF, and FFF. In contrast, cytokine synthesis and secretion were enhanced in the YFY and FFF mutants. FcepsilonRI phosphorylation and Lyn kinase co-immunoprecipitation was intact in the YFY mutant but was lost in the FYF and FFF mutants. The phosphorylation of Syk, LAT, phospholipase gamma1/2, and Srchomology 2 domain-containing protein phosphatase 2 was intact, whereas the phosphorylation of SHIP-1 was significantly reduced in the YFY mutant cells. The FYF and FFF mutants were defective in phosphorylating all of these molecules. In contrast, the phosphorylation of ERK, p38 MAPK, IkappaB kinase beta (IKKbeta), and nuclear NFkappaB activity was enhanced in the YFY and FFF mutants. These findings show that the FcepsilonRIbeta functions to both selectively amplify (degranulation and leukotriene secretion) and dampen (lymphokine) mast cell effector responses.  相似文献   

6.
《The Journal of cell biology》1996,133(5):1007-1015
The src family tyrosine kinase p59fyn binds to a signaling motif contained in subunits of the TCR known as the immune-receptor tyrosine- based activation motif (ITAM). This is a specific property of p59fyn because two related src family kinases, p60src and p56lck, do not bind to ITAMs. In this study, we identify the residues of p59fyn that are required for binding to ITAMs. We previously demonstrated that the first 10 residues of p59fyn direct its association with the ITAM. Because this region of src family kinases also directs their fatty acylation and membrane association (Resh, M.D. 1993, Biochim. Biophys. Acta 1155:307-322; Resh, M.D. 1994. Cell. 76:411-413), we determined whether fatty acylation and membrane association of p59fyn correlates with its ability to bind ITAMs. Four residues (Gly2, Cys3, Lys7, and Lys9) were required for efficient binding of p59fyn to the TCR. Interestingly, the same four residues are present in p56lyn, the other src family tyrosine kinase known to bind to the ITAM, suggesting that this set of residues constitutes an ITAM recognition motif. These residues were also required for efficient fatty acylation (myristoylation at Gly2 and palmitoylation at Cys3), and plasma membrane targeting of p59fyn. Thus, the signals that direct p59fyn fatty acylation and plasma membrane targeting also direct its specific ability to bind to TCR proteins.  相似文献   

7.
Siglec-5 (CD170) is a member of the recently described human CD33-related siglec subgroup of sialic acid binding Ig-like lectins and is expressed on myeloid cells of the hemopoietic system. Similar to other CD33-related siglecs, Siglec-5 contains two tyrosine-based motifs in its cytoplasmic tail implicated in signaling functions. To investigate the role of these motifs in Siglec-5-dependent signaling, we used transfected rat basophil leukemia cells as a model system. Tyrosine phosphorylation of Siglec-5 led to recruitment of the tyrosine phosphatases SHP-1 and SHP-2, as seen in both pull-down assays and microscopy. Siglec-5 could efficiently inhibit FcepsilonRI-mediated calcium fluxing and serotonin release after co-cross-linking. Surprisingly, a double tyrosine to alanine mutant of Siglec-5 could still mediate strong inhibition of serotonin release in the absence of detectable tyrosine phosphorylation, whereas a double tyrosine to phenylalanine mutant lost all inhibitory activity. In comparison, suppression of Siglec-5-dependent adhesion to red blood cells was reversed by either tyrosine to alanine or tyrosine to phenylalanine mutations of the membrane proximal tyrosine-based motif. Using an in vitro phosphatase assay with synthetic and recombinant forms of the cytoplasmic tail, it was shown that a double alanine mutant of Siglec-5 had weak, but significant SHP-1 activating properties similar to those of wild type, non-phosphorylated cytoplasmic tail, whereas a double phenylalanine mutant was inactive. These findings establish that Siglec-5 can be classified as an inhibitory receptor with the potential to mediate SHP-1 and/or SHP-2-dependent signaling in the absence of tyrosine phosphorylation.  相似文献   

8.
9.
Sigalov A  Aivazian D  Stern L 《Biochemistry》2004,43(7):2049-2061
Antigen receptors on T cells, B cells, mast cells, and basophils all have cytoplasmic domains containing one or more copies of an immunoreceptor tyrosine-based activation motif (ITAM), tyrosine residues of which are phosphorylated upon receptor engagement in an early and obligatory event in the signaling cascade. How clustering of receptor extracellular domains leads to phosphorylation of cytoplasmic domain ITAMs is not known, and little structural or biochemical information is available for the ITAM-containing cytoplasmic domains. Here we investigate the conformation and oligomeric state of several immune receptor cytoplasmic domains, using purified recombinant proteins and a variety of biophysical and biochemical techniques. We show that all of the cytoplasmic domains of ITAM-containing signaling subunits studied are oligomeric in solution, namely, T cell antigen receptor zeta, CD3epsilon, CD3delta, and CD3gamma, B cell antigen receptor Igalpha and Igbeta, and Fc receptor FcepsilonRIgamma. For zeta(cyt), the oligomerization behavior is best described by a two-step monomer-dimer-tetramer fast dynamic equilibrium with dissociation constants in the order of approximately 10 microM (monomer-dimer) and approximately 1 mM (dimer-tetramer). In contrast to the other ITAM-containing proteins, Igalpha(cyt) forms stable dimers and tetramers even below 10 microM. Circular dichroic analysis reveals the lack of stable ordered structure of the cytoplasmic domains studied, and oligomerization does not change the random-coil-like conformation observed. The random-coil nature of zeta(cyt) was also confirmed by heteronuclear NMR. Phosphorylation of zeta(cyt) and FcepsilonRIgamma(cyt) does not significantly alter their oligomerization behavior. The implications of these results for transmembrane signaling and cellular activation by immune receptors are discussed.  相似文献   

10.
A critical event in signaling in immune cells is the interaction of Syk or ZAP-70 protein tyrosine kinases with multisubunit receptors that contain an approximately 18-amino-acid domain called the immunoreceptor tyrosine-based activation motif (ITAM). Tyrosine-phosphorylated Syk from activated cells was in a conformation different from that in nonstimulated cells as demonstrated by changes in immunoreactivity. The addition of tyrosine-diphosphorylated ITAM peptides resulted in a similar conformational change in Syk from nonactivated cells. The peptides based on FcepsilonRIgamma were more active than those based on Fcepsilon RIbeta. In vitro autophosphorylation of Syk was dramatically enhanced by the addition of the diphosphorylated ITAM peptides. The conformational change and the enhanced autophosphorylation required the presence of both phosphorylated tyrosines on the same molecule. These conformational changes in Syk by tyrosine phosphorylation or binding to diphosphorylated ITAM could be critical for Syk activation and downstream propagation of intracellular signals.  相似文献   

11.
Siglec-7 and Siglec-9 are two members of the recently characterized CD33-related Siglec family of sialic acid binding proteins and are both expressed on human monocytes and NK cells. In addition to their ability to recognize sialic acid residues, these Siglecs display two conserved tyrosine-based motifs in their cytoplasmic region similar to those found in inhibitory receptors of the immune system. In the present study, we use the rat basophilic leukemia (RBL) model to examine the potential of Siglecs-7 and -9 to function as inhibitory receptors and investigate the molecular basis for this. We first demonstrate that Siglecs-7 and -9 are able to inhibit the FcepsilonRI-mediated serotonin release from RBL cells following co-crosslinking. In addition, we show that under these conditions or after pervanadate treatment, Siglecs-7 and -9 associate with the Src homology region 2 domain-containing phosphatases (SHP), SHP-1 and SHP-2, both in immunoprecipitation and in fluorescence microscopy experiments using GFP fusion proteins. We then show by site-directed mutagenesis that the membrane-proximal tyrosine motif is essential for the inhibitory function of both Siglec-7 and -9, and is also required for tyrosine phosphorylation and recruitment of SHP-1 and SHP-2 phosphatases. Finally, mutation of the membrane-proximal motif increased the sialic acid binding activity of Siglecs-7 and -9, raising the possibility that "inside-out" signaling may occur to regulate ligand binding.  相似文献   

12.
A major Grb2-associated binder-1 (Gab1) binding partner in epidermal growth factor (EGF)-stimulated cells is protein-tyrosine phosphatase (PTPase) SHP2, which contains tandem SH2 domains. The SHP2 PTPase activity is required for activation of the extracellular signal-regulated kinase (ERK) subfamily of mitogen-activated protein (MAP) kinase by EGF. To investigate the mechanism by which Gab1 and SHP2 mediate ERK activation, we characterized the Gab1-SHP2 interaction. We found that both Tyr-627 and Tyr-659 of Gab1 were required for SHP2 binding to Gab1 and for ERK2 activation by EGF. Far Western blot analysis suggested that the tandem SH2 domains of SHP2 bind to Gab1 in a specific orientation, in which the N-SH2 domain binds to phosphotyrosine (Tyr(P))-627 and the C-SH2 domain binds to Tyr(P)-659. When assayed with peptide substrates, SHP2 PTPase was activated by a bisphosphopeptide containing both Tyr(P)-627 and Tyr(P)-659, but not by monophosphopeptides containing Tyr(P)-627 or Tyr(P)-659 or a mixture of these monophosphopeptides. These results suggest that Tyr(P)-627 and Tyr(P)-659 of Gab1 constitute a bisphosphoryl tyrosine-based activation motif (BTAM) that binds and activates SHP2. Remarkably, while a constitutively active SHP2 (SHP2DeltaN) could not rescue the defect of a SHP2-binding defective Gab1 (Gab1FF) in ERK2 activation, expression of a Gab1FF-SHP2DeltaN chimera resulted in constitutive activation of ERK2 in transfected cells. Thus, physical association of activated SHP2 with Gab1 is necessary and sufficient to mediate the ERK mitogen-activated protein kinase activation. Phosphopeptides derived from Gab1 were dephosphorylated by active SHP2 in vitro. Consistently, substrate-trapping experiments with a SHP2 catalytic inactive mutant suggested that Gab1 was a SHP2 PTPase substrate in the cells. Therefore, Gab1 not only is a SHP2 activator but also is a target of its PTPase.  相似文献   

13.
The B-lymphocyte accessory molecule Ig-alpha (Ig-α) is encoded by the mouse B cell-specific gene (mb-1), and along with the Ig-beta (Ig-β) molecule and a membrane bound immunoglobulin (mIg) makes up the B-cell receptor (BCR). Ig-α and Ig-β form a heterodimer structure that upon antigen binding and receptor clustering primarily initiates and controls BCR intracellular signaling via a phosphorylation cascade, ultimately triggering an effector response. The signaling capacity of Ig-α is contained within its immunoreceptor tyrosine-based activation motif (ITAM), which is also a key component for intracellular signaling initiation in other immune cell-specific receptors. Although numerous studies have been devoted to the mb-1 gene product, Ig-α, and its signaling mechanism, an evolutionary analysis of the mb-1 gene has been lacking until now. In this study, mb-1 coding sequences from 19 species were compared using Bayesian inference. Analysis revealed a gene phylogeny consistent with an expected species divergence pattern, clustering species from the primate order separate from lower mammals and other species. In addition, an overall comparison of non-synonymous and synonymous nucleotide mutational changes suggests that the mb-1 gene has undergone purifying selection throughout its evolution.  相似文献   

14.
15.
The aim of the present study was to perform an immunohistological assessment of the synovial tissue from involved small joints in rheumatoid arthritis (RA) and to explore the reliability of a mini-invasive ultrasound (US)-guided technique of small joint synovial biopsy for the histopathological assessment. Synovial tissue collected during arthrotomic surgery of small joints in nine patients served as the gold standard for the validation of the histological assessment. Small hand-joint synovial biopsies from an additional nine patients with erosive RA were obtained by a mini-invasive US-guided procedure, performed percutaneously by the portal and rigid forceps technique. Using digital image analysis, the area fractions of synovial macrophages (CD68 cells), T cells (CD3 cells) and B cells (CD20 cells) were measured in all high-power fields of every sample at different cutting levels. The representative sample was defined as the minimal number of high-power fields whose mean area fraction would reflect the overall mean area fraction within a percentage mean difference of 10%. For each patient, a range of three to five large samples for surgical biopsies and a range of 8–12 samples for US-guided biopsies were collected and analysed. In arthrotomic samples, the analysis of a randomly selected tissue area of 2.5 mm2 was representative of the overall value for CD68, CD3 and CD20 cells. US-guided samples allowed histological evaluation in 100% of cases, with a mean valid area of 18.56 mm2 (range 7.29–38.28 mm2). The analysis of a cumulative area of 2.5 mm2 from eight randomly selected sections (from different samples or from different cutting levels) allowed to reduce the percentage mean difference to less than 10% for CD68, CD3 and CD20 cells. In conclusion, US-guided synovial biopsy represents a reliable tool for the assessment of the histopathological features of RA patients with a mini-invasive approach.  相似文献   

16.
Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism.  相似文献   

17.
Our objective was to investigate sympathetic and sensory nerve fibers in synovial tissue in rheumatoid arthritis (RA) and osteoarthritis (OA) in relation to histological inflammation and synovial cytokine and norepinephrine (NE) secretion. Immunohistochemistry was used to detect nerve fibers and inflammatory parameters. A superfusion technique of synovial tissue pieces was used to investigate cytokine and NE secretion. In RA, we detected 0.2 +/- 0.04 tyrosine hydroxylase-positive (TH-positive=sympathetic) nerve fibers/mm2 as compared to 4.4 +/- 0. 8 nerve fibers/mm2 in OA (P<0.001). In RA, there was a negative correlation between the number of TH-positive nerve fibers and inflammation index (RRank=-0.705, P=0.002) and synovial IL-6 secretion (RRank=-0.630, P=0.009), which was not found in OA. Substance P-positive (=sensory) nerve fibers were increased in RA as compared to OA (3.5+/-0.2 vs. 2.3+/-0.3/mm2, P=0.009). Despite lower numbers of sympathetic nerve fibers in RA than in OA, NE release was similar at baseline (RA vs. OA: 152+/-36 vs. 106+/-21 pg/ml, n.s.). Basal synovial NE secretions correlate with the number of TH-positive CD 163+ synovial macrophages (RA: RRank=0.622, P=0.031; OA: RRank=0.299, n.s.), and synovial macrophages have been shown to produce NE in vitro. Whereas sympathetic innervation is reduced, sensory innervation is increased in the synovium from patients with longstanding RA when compared to the synovium from OA patients. The differential patterns of innervation are dependent on the severity of the inflammation. However, NE secretion from the synovial tissue is maintained by synovial macrophages. This demonstrates a loss of the influence of the sympathetic nervous system on the inflammation, accompanied by an up-regulation of the sensory inputs into the joint, which may contribute to the maintenance of the disease.  相似文献   

18.
Angiopoietins (Ang) are vascular endothelial cell-specific growth factors that play important roles principally during the later stages of angiogenesis. We have compared the distribution of the receptor tyrosine kinase (Tie) and the Ang ligands in synovial tissues from normal subjects and those with rheumatoid arthritis (RA) and osteoarthritis (OA).  相似文献   

19.
20.
To study the cis- and trans-acting factors that mediate programmed death 1 (PD-1) signaling in primary human CD4 T cells, we constructed a chimeric molecule consisting of the murine CD28 extracellular domain and human PD-1 cytoplasmic tail. When introduced into CD4 T cells, this construct mimics the activity of endogenous PD-1 in terms of its ability to suppress T cell expansion and cytokine production. The cytoplasmic tail of PD-1 contains two structural motifs, an ITIM and an immunoreceptor tyrosine-based switch motif (ITSM). Mutation of the ITIM had little effect on PD-1 signaling or functional activity. In contrast, mutation of the ITSM abrogated the ability of PD-1 to block cytokine synthesis and to limit T cell expansion. Further biochemical analyses revealed that the ability of PD-1 to block T cell activation correlated with recruitment of Src homology region 2 domain-containing phosphatase-1 (SHP-1) and SHP-2, and not the adaptor Src homology 2 domain-containing molecule 1A, to the ITSM domain. In TCR-stimulated T cells, SHP-2 associated with PD-1, even in the absence of PD-1 engagement. Despite this interaction, the ability of PD-1 to block T cell activation required receptor ligation, suggesting that colocalization of PD-1 with CD3 and/or CD28 may be necessary for inhibition of T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号