首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A versatile ligninolytic peroxidase has been cloned from Pleurotus eryngii and its allelic variant MnPL2 expressed in Aspergillus nidulans, with properties similar to those of the mature enzyme from P. eryngii. These include the ability to oxidize Mn2+ and aromatic substrates, confirming that this is a new peroxidase type sharing catalytic properties of lignin peroxidase and manganese peroxidase.  相似文献   

2.
Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations.  相似文献   

3.
The discovery in 1983 of fungal lignin peroxidases able to catalyze the oxidation of nonphenolic aromatic lignin model compounds and release some CO2 from lignin has been seen as a major advance in understanding how fungi degrade lignin. Recently, the fungus Trametes versicolor was shown to be capable of substantial decolorization and delignification of unbleached industrial kraft pulps over 2 to 5 days. The role, if any, of lignin peroxidase in this biobleaching was therefore examined. Several different assays indicated that T. versicolor can produce and secrete peroxidase proteins, but only under certain culture conditions. However, work employing a new lignin peroxidase inhibitor (metavanadate ions) and a new lignin peroxidase assay using the dye azure B indicated that secreted lignin peroxidases do not play a role in the T. versicolor pulp-bleaching system. Oxidative activity capable of degrading 2-keto-4-methiolbutyric acid (KMB) appeared unique to ligninolytic fungi and always accompanied pulp biobleaching.  相似文献   

4.
5.
The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi.  相似文献   

6.
One laccase-secreting engineered strain and four white-rot fungi were tested for their capacity to decolorize nine dyes that could be classified as azo, anthraquinonic and triphenylmethane dyes. Trametes versicolor was the most efficient of the tested strains under these experimental conditions. Anthraquinonic dyes were decolorized more easily than the other two types. Small structural differences among the dyes could significantly affect decolorization. None of the strains showed lignin peroxidase or veratryl alcohol oxidase activity. None of the dyes were decolorized completely by laccase alone. It is likely that other phenoloxidases, such as Mn-dependent and versatile peroxidase, were also involved in decolorization of the dyes.  相似文献   

7.
Macrophomina phaseolina is one of the deadliest necrotrophic fungal pathogens that infect more than 500 plant species including major food, fiber, and oil crops all throughout the globe. It secretes a cocktail of ligninolytic enzymes along with other hydrolytic enzymes for degrading the woody lignocellulosic plant cell wall and penetrating into the host tissue. Among them, lignin peroxidase has been reported only in Phanerochaete chrysosporium so far. But interestingly, a recent study has revealed a second occurrence of lignin peroxidase in M. phaseolina. However, lignin peroxidases are of much significance biotechnologically because of their potential applications in bio-remedial waste treatment and in catalyzing difficult chemical transformations. Besides, this enzyme also possesses agricultural and environmental importance on account of their role in lignin biodegradation. In the present work, different properties of the lignin peroxidase of M. phaseolina along with predicting the 3-D structure and its active sites were investigated by the use of various computational tools. The data from this study will pave the way for more detailed exploration of this enzyme in wet lab and thereby facilitating the strategies to be designed against such deadly weapons of Macrophomina phaseolina. Furthermore, the insight of such a ligninolytic enzyme will contribute to the assessment of its potentiality as a bioremediation tool.  相似文献   

8.
Since biosynthesis of lignin peroxidase fromPhanerochaete chrysosporium was known to be sensitive to shear, it is interesting to understand the effects of the shear sensitivity for the over production of lignin peroxidase. In stirred-tank fermentor, the shear-sensitivity in lignin peroxidase biosynthesis was quantified by using Kolmogorov length scale. It was found that agitation at 80 μm Kolmogorov length scale is advantageous for the production of lignin peroxidase fromP. chrysosporium. To overcome the shear sensitivity in lignin peroxidase biosynthesis caused by the agitation,P. chrysosporium was immobilized on various solid carriers. The nylon-immobilizedP. chrysosporium was chosen in the present study as a way to overcome the shear sensitivity at the ranges of above 50 μm Kolmogorov length scale. The adhesion force between immobilized cell and carrier can be predicted by thermodynamic approach and used as a criteria to select an adequate carrier materials for immobilization.  相似文献   

9.
A versatile ligninolytic peroxidase has been cloned from Pleurotus eryngii and its allelic variant MnPL2 expressed in Aspergillus nidulans, with properties similar to those of the mature enzyme from P. eryngii. These include the ability to oxidize Mn(2+) and aromatic substrates, confirming that this is a new peroxidase type sharing catalytic properties of lignin peroxidase and manganese peroxidase.  相似文献   

10.
Triphenylmethane dyes such as Crystal Violet (CV) and Malachite Green (MG) are common textile dyes. MG, which is toxic to humans, is widely used in aquaculture as an antifungal agent. In this study, 56 mushroom strains from 12 species of wild mushrooms were examined on dye-containing PDA plates to evaluate their potential for the bioremediation of synthetic dyes. Pycnoporus coccineus, Coriolus versicolor, and Lentinula edodes showed fair growth on CV, but only a few survived on MG. However, a decolorization experiment in an aqueous system revealed that the growth on MG-containing solid medium did not directly match the decolorization of MG in the aqueous system. C. versicolor IUM0061 grew well on both MG and CV plates, but could not decolorize MG in the reaction mixture. Conversely, HPLC analysis revealed that P. coccineus IUM0032, which could not grow on the MG plate, completely mineralized MG within 3 days. A subsequent enzyme activity assay revealed a high lignin peroxidase activity in the reaction mixture, indicating that lignin peroxidase is the key enzyme involved in degradation of MG in P. coccineus IUM0032.  相似文献   

11.
Cell walls of Pinus elliottii callus contain ca 12 % protein. Klason lignin prepared from the walls contained 9 % protein and represented 4.5 % of the wall. The lignin fraction was increased to 22 % of the wall weight by reacting washed cell-wall tissue with coniferyl alcohol and H2O2, a reaction catalysed by peroxidase that remained bound to the wall. The augmented lignin preparation yielded 10 % protein. The acid hydrolysate of whole wall tissue included five amino acids at a concentration higher than hydroxyproline. The hydrolysates of both natural and augmented lignin preparations yielded distributions of amino acids in which the concentration of hydroxyproline was higher than that of all other amino acids. The results suggest that polymerizing lignin links covalently with cell-wall glycoprotein, and that the bonds may be formed preferentially with hydroxyproline.  相似文献   

12.
Agaricus bisporus, grown under standard composting conditions, was evaluated for its ability to produce lignin-degrading peroxidases, which have been shown to have an integral role in lignin degradation by wood-rotting fungi. The activity of manganese peroxidase was monitored throughout the production cycle of the fungus, from the time of colonization of the compost through the development of fruit bodies. Characterization of the enzyme was done with a crude compost extract. Manganese peroxidase was found to have a pI of 3.5 and a pH optimum of 5.4 to 5.5, with maximal activity during the initial stages of fruiting (pin stage). The activity declined considerably with fruit body maturation (first break). This apparent developmentally regulated pattern parallels that observed for laccase activity and for degradation of radiolabeled lignin and synthetic lignins by A. bisporus. Lignin peroxidase activity was not detected in the compost extracts. The correlation between the activities of manganese peroxidase and laccase and the degradation of lignin in A. bisporus suggests significant roles for these two enzymes in lignin degradation by this fungus.  相似文献   

13.
Evidence for a senescence-associated gene induced by darkness   总被引:18,自引:3,他引:15       下载免费PDF全文
Tobacco (Nicotiana tabacum) plants transformed with a chimeric tobacco anionic peroxidase gene have previously been shown to synthesize high levels of peroxidase in all tissues throughout the plant. One of several distinguishable phenotypes of transformed plants is the rapid browning of pith tissue upon wounding. Pith tissue from plants expressing high levels of peroxidase browned within 24 hours of wounding, while tissue from control plants did not brown as late as 7 days after wounding. A correlation between peroxidase activity and wound-induced browning was observed, whereas no relationship between polyphenol oxidase activity and browning was found. The purified tobacco anionic peroxidase was subjected to kinetic analysis with substrates which resemble the precursors of lignin or polyphenolic acid. The purified enzyme was found to readily polymerize phenolic acids in the presence of H2O2 via a modified ping-pong mechanism. The percentage of lignin and lignin-related polymers in cell walls was nearly twofold greater in pith tissue isolated from peroxidase-overproducer plants compared to control plants. Lignin deposition in wounded pith tissue from control plants closely followed the induction of peroxidase activity. However, wound-induced lignification occurred 24 to 48 hours sooner in plants overexpressing the anionic peroxidase. This suggests that the availability of peroxidase rather than substrate may delay polyphenol deposition in wounded tissue.  相似文献   

14.
In recent years, many research on the quantity of lignocellulosic waste have been developed. The production, partial purification, and characterisation of ligninolytic enzymes from various fungi are described in this work. On the 21st day of incubation in Potato Dextrose (PD) broth, Hypsizygus ulmarius developed the most laccase (14.83 × 10−6 IU/ml) and manganese peroxidase (24.11 × 10−6 IU/ml), while Pleurotus florida produced the most lignin peroxidase (19.56 × −6 IU/ml). Laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), all generated by selected basidiomycetes mushroom fungi, were largely isolated using ammonium sulphate precipitation followed by dialysis. Laccase, lignin peroxidase, and manganese peroxidase purification findings indicated 1.83, 2.13, and 1.77 fold purity enhancements, respectively. Specific activity of purified laccase enzyme preparations ranged from 305.80 to 376.85 IU/mg, purified lignin peroxidase from 258.51 to 336.95 IU/mg, and purified manganese peroxidase from 253.45 to 529.34 IU/mg. H. ulmarius laccase (376.85 IU/mg) with 1.83 fold purification had the highest specific activity of all the ligninolytic enzymes studied, followed by 2.13 fold purification in lignin peroxidase (350.57 IU/mg) and manganese peroxidase (529.34 IU/mg) with 1.77-fold purification. Three notable bands with molecular weights ranging from 43 to 68 kDa and a single prominent band with a molecular weight of 97.4 kDa were identified on a Native PAGE gel from mycelial proteins of selected mushroom fungus. The SDS PAGE profiles of the mycelial proteins from the selected mushroom fungus were similar to the native PAGE. All three partially purified ligninolytic isozymes display three bands in native gel electrophoresis, with only one prominent band in enzyme activity staining. The 43 kDa, 55 kDa, and 68 kDa protein bands correspond to laccase, lignin peroxidase, and manganese peroxidase, respectively.  相似文献   

15.
Lignin was mineralized in the experiments in which 14C-lignin was incubated with lignin peroxidase or manganese peroxidase in a tartrate buffer in the presence of cycloheximide-treated protoplasts obtained from the ligninolytic mycelia of Phanerochaete chrysosporium. The rate of lignin mineralization was dependent on the lignin peroxidase or manganese peroxidase concentration in the medium. In the experiments in which lignin was incubated with lignin peroxidase or manganese peroxidase, lignin was repolymerized irrespective of the presence of protoplasts mineralizing lignin, suggesting that an active degradation of lignin and repolymerization took place. Taking into account that lignin peroxidase and manganese peroxidase were the only extracellular enzymes in the experiments in which lignin was mineralized by the protoplasts, it is postulated that lignin peroxidase and/or manganese peroxidase can degrade lignin into small fragments which can then be further absorbed by the fungal cells and subsequently degraded to CO2.  相似文献   

16.
17.
Lignin, the most abundant aromatic biopolymer on Earth, is extremely recalcitrant to degradation. By linking to both hemicellulose and cellulose, it creates a barrier to any solutions or enzymes and prevents the penetration of lignocellulolytic enzymes into the interior lignocellulosic structure. Some basidiomycetes white-rot fungi are able to degrade lignin efficiently using a combination of extracellular ligninolytic enzymes, organic acids, mediators and accessory enzymes. This review describes ligninolytic enzyme families produced by these fungi that are involved in wood decay processes, their molecular structures, biochemical properties and the mechanisms of action which render them attractive candidates in biotechnological applications. These enzymes include phenol oxidase (laccase) and heme peroxidases [lignin peroxidase (LiP), manganese peroxidase (MnP) and versatile peroxidase (VP)]. Accessory enzymes such as H2O2-generating oxidases and degradation mechanisms of plant cell-wall components in a non-enzymatic manner by production of free hydroxyl radicals (·OH) are also discussed.  相似文献   

18.
Versatile peroxidase (VP) is a high redox-potential peroxidase of biotechnological interest that is able to oxidize phenolic and non-phenolic aromatics, Mn2+, and different dyes. The ability of VP from Pleurotus eryngii to oxidize water-soluble lignins (softwood and hardwood lignosulfonates) is demonstrated here by a combination of directed mutagenesis and spectroscopic techniques, among others. In addition, direct electron transfer between the peroxidase and the lignin macromolecule was kinetically characterized using stopped-flow spectrophotometry. VP variants were used to show that this reaction strongly depends on the presence of a solvent-exposed tryptophan residue (Trp-164). Moreover, the tryptophanyl radical detected by EPR spectroscopy of H2O2-activated VP (being absent from the W164S variant) was identified as catalytically active because it was reduced during lignosulfonate oxidation, resulting in the appearance of a lignin radical. The decrease of lignin fluorescence (excitation at 355 nm/emission at 400 nm) during VP treatment under steady-state conditions was accompanied by a decrease of the lignin (aromatic nuclei and side chains) signals in one-dimensional and two-dimensional NMR spectra, confirming the ligninolytic capabilities of the enzyme. Simultaneously, size-exclusion chromatography showed an increase of the molecular mass of the modified residual lignin, especially for the (low molecular mass) hardwood lignosulfonate, revealing that the oxidation products tend to recondense during the VP treatment. Finally, mutagenesis of selected residues neighboring Trp-164 resulted in improved apparent second-order rate constants for lignosulfonate reactions, revealing that changes in its protein environment (modifying the net negative charge and/or substrate accessibility/binding) can modulate the reactivity of the catalytic tryptophan.  相似文献   

19.
Lignins result from the oxidative polymerization of three hydroxycinnamyl (p-coumaryl, coniferyl, and sinapyl) alcohols in a reaction mediated by peroxidases. The most important of these is the cationic peroxidase from Zinnia elegans (ZePrx), an enzyme considered to be responsible for the last step of lignification in this plant. Bibliographical evidence indicates that the arabidopsis peroxidase 72 (AtPrx72), which is homolog to ZePrx, could have an important role in lignification. For this reason, we performed a bioinformatic, histochemical, photosynthetic, and phenotypical and lignin composition analysis of an arabidopsis knock-out mutant of AtPrx72 with the aim of characterizing the effects that occurred due to the absence of expression of this peroxidase from the aspects of plant physiology such as vascular development, lignification, and photosynthesis. In silico analyses indicated a high homology between AtPrx72 and ZePrx, cell wall localization and probably optimal levels of translation of AtPrx72. The histochemical study revealed a low content in syringyl units and a decrease in the amount of lignin in the atprx72 mutant plants compared to WT. The atprx72 mutant plants grew more slowly than WT plants, with both smaller rosette and principal stem, and with fewer branches and siliques than the WT plants. Lastly, chlorophyll a fluorescence revealed a significant decrease in ΦPSII and q L in atprx72 mutant plants that could be related to changes in carbon partitioning and/or utilization of redox equivalents in arabidopsis metabolism. The results suggest an important role of AtPrx72 in lignin biosynthesis. In addition, knock-out plants were able to respond and adapt to an insufficiency of lignification.  相似文献   

20.
The active site amino acid residues of lignin peroxidase are homologous to those of other peroxidases; however, in contrast to other peroxidases, no pH dependence is observed for the reaction of ferric lignin peroxidase with H2O2 to form compound I (Andrawis, A., Johnson, K.A., and Tien, M. (1988) J. Biol. Chem. 263, 1195-1198). Chloride binding is used in the present study to investigate this reaction further. Chloride binds to lignin peroxidase at the same site as cyanide and hydrogen peroxide. This is indicated by the following. 1) Chloride competes with cyanide in binding to lignin peroxidase. 2) Chloride is a competitive inhibitor of lignin peroxidase with respect to H2O2. The inhibition constant (Ki) is equal to the dissociation constant (Kd) of chloride at all pH values studied. Chloride binding is pH dependent: chloride binds only to the protonated form of lignin peroxidase. Transient-state kinetic studies demonstrate that chloride inhibits lignin peroxidase compound I formation in a pH-dependent manner with maximum inhibition at low pH. An apparent pKa was calculated at each chloride concentration; the pKa increased as the chloride concentration increased. Extrapolation to zero chloride concentration allowed us to estimate the intrinsic pKa for the ionization in the lignin peroxidase active site. The results reported here provide evidence that an acidic ionizable group (pKa approximately 1) at the active site controls both lignin peroxidase compound I formation and chloride binding. We propose that the mechanism for lignin peroxidase compound I formation is similar to that of other peroxidases in that it requires the deprotonated form of an ionizable group near the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号