首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organosilicons and biocides with known effectiveness against fungal disfigurement were used for dipping or impregnating Scots pine sapwood specimens. All specimens were artificially or naturally weathered and the colour of all specimens was determined with a spectrophotometer at fixed times. After artificial weathering the specimens were used in blue stain tests according to EN 152 or according to the EN 152 reverse method. The naturally exposed specimens were inspected for fungal disfigurement on their back side. Although the results learn that the coating approach is far better than the wood preservatives approach for evaluating blue stain attack of organosilicon-treated wood, organosilicons fail to protect wood under laboratory conditions. Outdoor exposure, however, revealed that organosilicon impregnated specimens were better protected against fungal disfigurement. The addition of a biocide improves the performance. Artificially aged specimens did not show significant colour differences compared to untreated Scots pine sapwood, while naturally aged specimens did, depending on the treatment conditions and presence of biocides. Organosilicons are able to reduce leaching of (degraded) wood constituents, leading to fewer colour changes compared to untreated scots pine and to decreased availability of nutrients for superficial fungal growth.  相似文献   

2.
When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.  相似文献   

3.
The early colonization of Scots pine (Pinus sylvestris L.) sapwood exposed above ground (staple bed) was studied. Two different types of exposures were used, one in an open field and the other in a shaded field. Decay type and degree of degradation due to soft rot, and mass and strength loss of wood were correlated. Fungal species in Scots pine sapwood were identified by sequencing, using the fungal nuclear ribosomal DNA (nrDNA) after 24 months.The most abundant decay type found was soft rot, which also agreed with the mass loss (7–8%). Pine sapwood did not differ significantly between the two sites regarding the average mass loss during the time of exposure. The early colonization of wood by soft rot fungi together with mass loss indicates that this fungal type might be more common in above-ground conditions than recognized earlier.  相似文献   

4.
During their growth on wood many fungi produce characteristic volatile organic compounds as secondary metabolites. These microbial volatile organic compounds (MVOCs) can be used as indicators of fungal growth even when such growth is concealed. In order to investigate the formation of these volatile metabolites on building materials, specimens of pine sapwood on agar media colonized by the dry-rot fungus Serpula lacrymans and a mixture of six moulds were examined. MVOCs from this fungal growth were studied over a period of up to half a year by ion mobility spectrometry (IMS) headspace analysis using a sensitive, portable IMS mini-device. The IMS headspace spectra from the growing fungal specimens obtained during this time span are differed from non-incubated wood specimens and indicate the presence of a mixture of MVOCs. The composition and amount of volatile metabolites of the fungi changed during cultivation. This was confirmed by a principal component analysis (PCA). Identification of different MVOCs in the headspace according to drift time and the mobility of ionized gaseous species in reference to GC-MS investigations were proposed. It was concluded that IMS can be used as a rapid and sensitive on-site method to indicate actively growing fungi concealed within wood.  相似文献   

5.
Dead wood is an important habitat for forest organisms, and wood decay fungi are the principal agents determining the dead wood properties that influence the communities of organisms inhabiting dead wood. In this study, we investigated the effects of wood decomposer fungi on the communities of myxomycetes and bryophytes inhabiting decayed logs. On 196 pine logs, 72 species of fungi, 34 species and seven varieties of myxomycetes, and 16 species of bryophytes were identified. Although white rot was the dominant decay type in sapwood and heartwood, brown and soft rots were also prevalent, particularly in sapwood. Moreover, white rot and soft rot were positively and brown rot negatively correlated with wood pH. Ordination analyses clearly showed a succession of cryptogam species during log decomposition and showed significant correlations of communities with the pH, water content, and decay type of wood. These analyses indicate that fungal wood decomposer activities strongly influence the cryptogam communities on dead wood.  相似文献   

6.
Over the past few decades, rural forest ecosystems in Japan have experienced dynamic vegetation changes due to forest dieback and changes in land use, leading to the loss of local species populations and biodiversity. The aim of this study was to evaluate the importance of pine (Pinus densiflora) stumps and logs for tree seedling regeneration in a mixed natural forest in Kyoto Prefecture, Japan, that had previously experienced severe pine dieback, and to determine which factors most greatly affect seedling establishment. Seedlings of 17 tree species were recorded on pine stumps and logs in later stages of decay, among which Chamaecyparis obtusa and Rhododendron reticulatum were most dominant. Both of these species had a greater density on pine stumps than on logs or soil, despite stumps covering less than 0.5% of the study area. In addition, the seedling densities of both species were positively associated with moss cover on coarse woody debris, but negatively associated with wood pH. Brown rot in the sapwood and heartwood, which occurred more frequently in stumps than in logs, also positively associated with the seedling densities of both species. Predictive modelling showed that C. obtusa seedlings exhibited a stronger response to pH in stumps than in logs. Therefore, since brown-rotted wood is acidic due to fungal decay activities, brown-rotted pine stumps may present hotspots of C. obtusa seedling regeneration at the study site.  相似文献   

7.
Resin acids in many pulp mill effluents are primary sources of toxicity to fish. Inconsistent biological detoxification of chlorinated and nonchlorinated resin acids in secondary treatment of pulp mill effluents is a continuing source of concern. An alternative approach to effluent detoxification is to remove or modify the toxic compounds present in wood chips prior to pulping. Results from experiments in which lodgepole pine sapwood chips were inoculated with several fungal candidates indicate that the total resin acid content can be reduced by up to 67% after fungal growth. Such a treatment could be an efficient and environmentally acceptable way for deresinating wood chips and so decreasing the toxicity of pulp mill effluents.  相似文献   

8.
Medium density fiberboard (MDF) production worldwide is increasing due to the development of new manufacturing technologies. As a result, MDF products are increasingly utilized in traditional wood applications that require fungal and insect resistance. This study evaluated the ability of white and brown rot fungi and termites to decompose MDF consisting of different wood species by measuring weight loss. Furnish in the boards was prepared from heart and sapwood portions of pine (Pinus nigra Arnold var. pallasiana), beech (Fagus orientalis Lipsky), and European oak (Quercus robur L.) species. Fungal decay resistance tests were performed according to ASTM D 2017-81 standard method using two brown-rot fungi, Gloeophyllum trabeum (Pers. ex Fr.) Murr. (Mad 617), Postia placenta (Fries) M. Larsen et Lombard (Mad 698), and one white-rot fungus, Trametes versicolor (L. ex Ft.) Pilat (Mad 697). MDF and wood specimens were also bioassayed against the eastern subterranean termite, Reticulitermes flavipes (Kollar) in order to determine termite resistance of the specimens. MDF specimens containing oak and mixed furnish demonstrated increased durability against decay fungi. Only pine, oak, and mixed MDF specimens met the 25% or less weight loss limit to be classified resistant according to ASTM D 2017-81 standard method. Overall, MDF specimens made from oak showed better performance than oak solid wood specimens. Accelerated aging according to ASTM D 1037-96a standard method before fungal bioassay decreased fungal resistance of the specimens. In contrast to the fungal bioassay, MDF specimens made from beech and mixed furnish showed decreased weight losses from termite attack after 4 weeks. However, none of the MDF specimens were resistant to termite attack. In severe conditions, the MDFs may require the incorporation of chemical biocides prior to board production for increasing the resistance of MDF to termite attack.  相似文献   

9.
The development of mould on wood surfaces depends on several factors. Although mould does not affect the mechanical properties of wood, it greatly reduces the aesthetic value of wood such as the sapwood of Scots pine (Pinus sylvestris L.), which is very prone to mould. In addition, adverse health effects of mould on humans are a great concern. Different types of dried and treated wood were used to observe whether they had enhanced durability against mould following an accelerated laboratory test method in a climate chamber. Samples were green, air-dried, industrially thermally modified, treated with copper-based preservative, and kiln-dried wood, which were tested within a single test run. The test produced the following main results: The thermal modification increased the durability of the wood, and the protective effectiveness of alternative treatments was comparable to that of commercially available copper-based treatment. However, the initial moisture content of the samples during mould exposure had a great influence on the onset of mould growth. The risk of mould susceptibility of industrial kiln-dried lumber can be reduced by drying using the double-layering technique and planing off the nutrient enriched evaporation surfaces.  相似文献   

10.
The field test of alkaline copper quat-type D (ACQ-D) treated Chinese fir (Cunninghamia lanceolata Hook.) and Mongolian Scots pine (Pinus sylvestris Linn. var. mongolica Litv.) stakes after different post-treatments was performed in two test plots (Chengdu and Guangzhou, China). The ACQ-D treatments used two concentration levels (0.5 and 1.1%) and four different post-treatments: air drying for 1 month (AD), conditioning at 70 °C and 80% relative humidity for 24 h (HC), oven drying at 110 °C for 24 h (DO) and boiling in water for 15 h (HW). The decay and termite ratings of the stakes after 6 and 20 months of exposure were recorded according to the method described in AWPA standard E07-07. The copper retention and compression strength parallel to grain before and after exposure were also compared. The results showed that Chinese fir had slightly better natural durability than Mongolian Scots pine but the untreated sapwood stakes for both wood species were mostly destroyed after 20 months exposure. After ACQ-D treatment, the sapwood of both wood species showed much better biological performance. Among the four post-treatments, HC exhibited the best performance by showing excellent biological resistance, less copper depletion and a slight reduction in compression strength after 20 months outdoor exposure. While the performance of the other post-treated stakes were impaired heavily in some cases in terms of wood species, test plots and the concentration levels of ACQ-D solutions. Furthermore, the study confirms that ACQ-D treated plantation-grown Chinese fir could be used for outdoor above ground and ground-contact applications.  相似文献   

11.
丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系   总被引:1,自引:0,他引:1  
木腐真菌是一类以木材为生长基质的大型真菌, 通过分泌各种水解酶全部或部分降解木材中的木质素、纤维素和半纤维素, 促进森林生态系统的物质循环, 具有重要的生态功能。本研究调查了丰林国家级自然保护区固定样地中木腐真菌的多样性和倒木特征, 并进行了木腐真菌的物种多样性和数量与倒木的种类、数量、腐朽程度、直径大小等的相关性分析。结果显示: 在样地内共采集木腐真菌标本295份, 经鉴定为93种, Shannon多样性指数为3.86, Simpson指数为0.96。相关性分析发现木腐真菌的数量和种类与直径为2-5 cm和5-10 cm的倒木、2级腐烂的倒木和红松倒木均显著相关。样地中优势倒木寄主分别为槭属(Acer)、榛属(Corylus)、云杉属(Picea)和松属(Pinus), 这4类倒木上生长的木腐真菌种类组成具有明显的差异, 槭属和榛属倒木上的共有优势种主要是三色拟迷孔菌(Daedaleopsis tricolor)、云芝(Trametes versicolor)和桦附毛孔菌(Trichaptum pargamenum), 而松属和云杉属的共有优势种主要有白囊耙齿菌(Irpex lacteus)、云芝、冷杉附毛孔菌(Trichaptum abietinum)和褐紫附毛孔菌(T. fuscoviolaceum)。倒木产生真菌子实体的概率研究表明, 同一类寄主倒木上发生木腐真菌子实体的概率在调查面积增加到0.36 ha后趋于一个定值, 松属倒木中仅有10.2%产生真菌子实体, 槭属和云杉属分别是12.9%和13.4%, 榛属最高, 达到53.7%。本研究结果对于预测森林生态系统中木腐真菌的发生具有重要理论意义。  相似文献   

12.
Precise dating of the year of felling is one intended outcome of dendrochronology. However, occasionally some or all sapwood rings might be missing, either due to deterioration or because they were carved off, or for some other reason. Consequently, while heartwood is preserved, sapwood might be fully or partially missing. In such cases, the year of felling must be estimated by adding a suitable number of sapwood rings. A heartwood age rule (HAR) has been advocated for Scots pine and adapted to European larch and Cembra pine, implying a linear relationship between sapwood ring count and the square root of heartwood ring count, largely irrespective of position in the stem. The same rule applied to all observations of a species, irrespective of silviculture, location or fertility of the growth site. Scots pine had twice or thrice as many sapwood rings as Cembra pine, which had 10% more rings than larch. The magnitude of model residuals was proportional to estimated sapwood ring count. Relative residuals were roughly normally distributed. To be applicable in Bayesian modelling in dendrochronology analyses, detailed information on model errors has been provided.  相似文献   

13.
Old trees are rare in the landscape, as are many of their associated species. Veteranisation is a method by which attempts are made to create microhabitats, otherwise found only in old trees, in younger trees at an earlier stage than would occur naturally. Here, we analysed the early fungal succession in 6 y-old veteranisation wounds in ca. 100 y old living oak trunks by DNA-barcoding of the wood at eight sites in Sweden and Norway. We hypothesised basidiomycetes would be most abundant, and exposed sapwood and heartwood would select for different communities. We identified 686 fungal taxa, mainly ascomycetes, with a large overlap in species composition and surprisingly similar species richness, i.e. 325 vs. 308–360, between intact and different types of damaged wood, respectively. Endophytes continued to be present and common in damaged wood. The results demonstrate that damage to sapwood and heartwood partly select for different fungi and that 6 y is too early to evaluate if veteranisation can positively favour fungi of conservation interest.  相似文献   

14.
In forests, bacteria and fungi are key players in wood degradation. Still, studies focusing on bacterial and fungal successions during the decomposition process depending on the wood types (i.e. sapwood and heartwood) remain scarce. This study aimed to understand the effect of wood type on the dynamics of microbial ecological guilds in wood decomposition. Using Illumina metabarcoding, bacterial and fungal communities were monitored every 3 months for 3 years from Quercus petraea wood discs placed on forest soil. Wood density and microbial enzymes involved in biopolymer degradation were measured. We observed rapid changes in the bacterial and fungal communities and microbial ecological guilds associated with wood decomposition throughout the experiment. Bacterial and fungal succession dynamics were very contrasted between sapwood and heartwood. The initial microbial communities were quickly replaced by new bacterial and fungal assemblages in the sapwood. Conversely, some initial functional guilds (i.e. endophytes and yeasts) persisted all along the experiment in heartwood and finally became dominant, possibly limiting the development of saprotrophic fungi. Our data also suggested a significant role of bacteria in nitrogen cycle during wood decomposition.  相似文献   

15.
A computer technique for assessing blue-stained coated wood has been implemented for evaluating the discoloration of coatings and analysing the interior wood staining of samples subjected to testing according to European Standard EN 152. The comparison of visual assessment and computer-evaluated percentages of blue staining is based on a combination of correlation measures, principal components and cluster analysis. It appears difficult to imitate human evaluation with image processing, since computer ratings represent exact percentages, while subjective evaluations do not. Additionally, more specific techniques for exploring fungal growth in coated wood have been described. As EN 152 was specifically developed for testing efficacy of wood preservatives, a modified test methodology was elaborated for testing the efficacy of wood coatings, called here as the EN 152-reverse method. Furthermore three-dimensional (3D) reconstruction is validated as a tool for in-depth analysis of blue-stain disfigurement. This 3D visualisation indicates important differences in fungal infestation and proves its suitability for blue-stain resistance testing.  相似文献   

16.
The susceptibility of Scots pine (Pinus sylvestris L.) sap- and heartwood against the wood decaying brown-rot fungus (Coniophora puteana) was investigated after long-term forest fertilization at three different sites in central Finland. Different wood properties: wood extractives, wood chemistry, and wood anatomy were used to explain sap- and heartwood decay. Scots pine sapwood was more susceptible to decay than its heartwood. In one site, sapwood seemed to be more resistant to wood decay after forest fertilization whereas the susceptibility of heartwood increased. Significant changes in the sapwood chemistry were found between treatment and sites, however, no relationship between wood chemistry and wood decay was observed in the factor analysis. The results of this study show that there was an inconsistent relationship between decay susceptibility and fertilization and the measured physical and chemical attributes of the wood were not consistently correlated with the decay rate.  相似文献   

17.
  • The wood economics spectrum provides a general framework for interspecific trait–trait coordination across wide environmental gradients. Whether global patterns are mirrored within species constitutes a poorly explored subject. In this study, I first determined whether wood density co‐varies together with elevation, tree growth and height at the within‐species level. Second, I determined the variation of wood density in different stem parts (trunk, branch and twigs).
  • In situ trunk sapwood, trunk heartwood, branch and twig densities, in addition to stem growth rates and tree height were determined in adult trees of Nothofagus pumilio at four elevations in five locations spanning 18° of latitude. Mixed effects models were fitted to test relationships among variables.
  • The variation in wood density reported in this study was narrow (ca. 0.4–0.6 g cm?3) relative to global density variation (ca. 0.3–1.0 g cm?3). There was no significant relationship between stem growth rates and wood density. Furthermore, the elevation gradient did not alter the wood density of any stem part. Trunk sapwood density was negatively related to tree height. Twig density was higher than branch and trunk densities. Trunk heartwood density was always significantly higher than sapwood density.
  • Negative across‐species trends found in the growth–wood density relationship may not emerge as the aggregate of parallel intraspecific patterns. Actually, trees with contrasting growth rates show similar wood density values. Tree height, which is tightly related to elevation, showed a negative relationship with sapwood density.
  相似文献   

18.
Extractable materials from some timber species have been identified which prevent wood decay; however, little has been reported on the effect(s) of such materials against mould species that colonize timber. With increasing interest in the use of Trichoderma species, both as agents of permeability enhancement and biological control, more information is required on how chemical components within fresh and processed timber influence growth of Trichoderma. Fresh and dried samples of Scots pine and Sitka spruce sapwood and heartwood were leached in a Soxhlet apparatus and the resulting extract was combined with malt extract agar and inoculated with Trichoderma. Trichoderma isolates were inhibited to varying degrees by extractives removed from fresh and dried heartwood of the two timbers. Growth on sapwood extractives, however, showed a lesser degree of inhibition. The implications of the results for applications of Trichoderma in timber are discussed.  相似文献   

19.
20.
The concentration and species composition of viableGram-negative bacteria was determined in samples of coniferous wood (Scots pine) and deciduous wood (European beech), and in air samples taken during the processing of these woods in sawmills. The concentration of Gram-negative bacteria in the sapwood of pine logs ranged from 1.0 × 101 to 6.2 × 104 CFU/g. Their concentration in the air of the pine processing sawmill was within a range of 1.0 × 102–6.3 × 102 CFU/m3. Concentration of Gram-negative bacteria in the sapwood of beech logs was similar to that in the sapwood of pine logs, ranging from 1.0 × 101 to 4.6 × 104 CFU/g. However, the concentration of these bacteria in the air of a beech processing sawmill was within a range of 7.8 × 103–1.3 × 104 CFU/m3, being significantly higher than in a pine processing sawmill. Enterobacteriaceae strains, mostly Enterobacter spp. and Rahnella spp., made up 70–75% of Gram-negative bacteria isolated from pine and beech wood and from the air pollutedwith sawdust from these woods. The aerial exposure to Gram-negative bacteria possessing endotoxic andallergenic properties poses potential risk ofoccupational respiratory disorders among sawmillworkers, in particular those processing beech wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号